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Abstract

Election Forensics: Vote Counts and Benford’s Law

How can we be sure that the declared election winner actually got the most votes? Was the

election stolen? This paper considers a statistical method based on the pattern of digits in vote

counts (the second-digit Benford’s Law, or 2BL) that may be useful for detecting fraud or other

anomalies. The method seems to be useful for vote counts at the precinct level but not for counts

at the level of individual voting machines, at least not when the way voters are assigned to

machines induces a pattern I call “roughly equal division with leftovers” (REDWL). I

demonstrate two mechanisms that can cause precinct vote counts in general to satisfy 2BL. I use

simulations to illustrate that the 2BL test can be very sensitive when vote counts are subjected to

various kinds of manipulation. I use data from the 2004 election in Florida and the 2006 election

in Mexico to illustrate use of the 2BL tests.



Fraudulent elections and disputes about election outcomes are nothing new. Gumbel (2005)

reviews the sorry history of deceit and electoral manipulation in America, going back to the dawn

of the republic. Throughout the world, in old and new democracies alike, allegations of vote fraud

frequently occur (Lehoucq 2003). One new element is voting technologies that make some familiar

methods for physically verifying the accuracy of vote totals impossible to use. The advent of

electronic voting machines means that often now there are no paper ballots to be recounted. To

steal an election it is no longer necessary to toss boxes of ballots in the river, stuff the boxes with

thousands of phony ballots, or hire vagrants to cast repeated illicit votes. All that may be needed

nowadays is access to an input port and a few lines of computer code. To detect such

manipulations is a difficult and urgent problem. In terms of legitimacy it is not clear whether the

worse problem is that erroneous election outcomes may occur or that many may not believe that

correct outcomes are valid.

In this paper I study a statistical method intended to help detect election fraud. Other

methods, using regression-based techniques for outlier detection, have previously been proposed

to help detect election anomalies (e.g. Wand, Shotts, Sekhon, Mebane, Herron, and Brady 2001;

Mebane, Sekhon, and Wand 2001; Mebane and Sekhon 2004). The method described here is

distinctive in that it does not require that we have covariates to which we may reasonably assume

the votes are related across political jurisdictions. The method is based on tests of the

distribution of the digits in reported vote counts, so all that is needed are the vote counts

themselves. Being based on so little information, the method cannot in itself diagnose whether an

anomaly it may flag is a consequence of fraud or of some other kind of irregularity. But, as I

show, some patterns of fraud will cause the method to trigger. So the method is best understood

as an indicator for places where investigations that use other kinds of information—for instance,

audits of election administration records and manual ballot recounts—might best be targeted.

Part of the potential practical relevance of the digit-testing method is that situations in which

little more than the vote counts are available may arise frequently in connection with actual

election controversies. I study the application of the method to both precinct-level and voting

machine-level vote tabulations. At the precinct level the method may be expected to be

remarkably sensitive to many patterns of distortion in the vote totals, but due to a prevalent

feature of the way voting machines (or voting booths) are often deployed, the digit-testing method
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is probably not useful for screening the totals recorded for individual machines or individual

ballot boxes. Changing the way voters are assigned to machines might eliminate this limitation.

The digit-test method is based on the expectation that the second digits of vote counts should

satisfy Benford’s Law (Hill 1995). Benford’s Law specifies that the ten possible second digits

should not occur with equal frequency. A fundamental question is why we should expect

Benford’s Law to apply to vote count data. Even though some have proposed to use the

second-digit Benford’s Law distribution to test for fraudulent votes (e.g., Pericchi and Torres

2004), prominent election monitors have strongly disputed such proposals (Carter Center 2005). I

suggest that a close focus on the act of casting each vote suggests a statistical model that very

often produces counts with second digits that have the distribution specified by Benford’s Law.

As important, to match observed vote count data, the counts the model generates do not have

first digits that satisfy Benford’s Law. What we often have in vote count data is not precisely

Benford’s Law but a process that strongly resembles the Benford’s Law distribution in the second

digits it produces. For lack of a better designation I will use the acronym 2BL to refer to this

second-digit Benford’s Law-like distribution.

A behavioral focus on the individualized uncertainty in each person’s voting decision that

follows the lines of familiar behavioral models may be inappropriate when thinking about vote

counts for the purpose of trying to decide whether the counts are fraudulent. Indeed, leaving

aside questions of vote fraud, to the extent that the familiar kinds of behavioral models cannot in

general produce vote counts with second digits that follow the 2BL distribution—and, in general,

they cannot—the fact that vote counts do often satisfy 2BL is evidence that the familiar

behavioral models do not describe the votes people actually cast.

Even if 2BL typically describes vote count data, it does not follow that deviations from 2BL

indicate election fraud. I present the results of some simulation exercises that suggest a test based

on the 2BL distribution can detect many kinds of fraud. The 2BL test is sensitive to some kinds

of manipulation of vote counts but not to others. In some cases it is very sensitive.

I apply the 2BL test to data from electronic early voting and election day votes in three

Florida counties (Broward, Miami-Dade and Pasco) in the 2004 general election,1 and to data

1See Gronke, Bishin, Stevens, and Galanes-Rosenbaum (2005) for a discussion of early voting in Florida during
the 2004 election.
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from the 2006 Mexican national election. The Florida data include voting machine event log files

that have labels identifying the precinct or ballot style and the voting machine for every ballot

cast.2 The Mexican data include vote counts resolved to the individual “casilla” (i.e., voting

booth or ballot box).

Benford’s Law and Vote Counts

Benford’s Law specifies that in a collection of numbers the different digits should not occur with

equal frequency. That is, each of the nine possible first significant digits (1, 2, . . . , 9) should not

each occur one-ninth of the time, each of the ten possible second significant digits (0, 1, . . . , 9)

should not each occur one-tenth of the time, and so forth. Instead, according to Benford’s Law

the first and second significant digits should occur with the frequencies shown in Table 1. Tests

against Benford’s Law have been promoted for use to detect fraud in forensic financial accounting

(Durtschi, Hillison, and Pacini 2004). In the realm of vote count data the relevance of Benford’s

Law has been controversial. Pericchi and Torres (2004) use tests of the second digits of vote

counts against the Benford’s Law distribution to raise the prospect of fraud in the Venzuelan

recall referendum of August 15, 2004. This charge is specifically denied in the Carter Center

report (Carter Center 2005, 132–133), based on technical analysis reported in Brady (2005) and

Taylor (2005).

*** Table 1 about here ***

Why should Benford’s Law apply to vote count data? A fundamental result is that Benford’s

Law does not in general hold for data that are simply random (Raimi 1976; Hill 1995). This

property is one basis for its proposed use in financial fraud detection. If someone uses numbers

taken directly from a table of random numbers to fill out faked financial records, the digits will

occur with equal frequency. The positive case for using Benford’s Law with financial data relies

on the supposedly complicated origins of financial data:

“[D]ata sets follow Benford’s Law when the elements result from random variables

taken from divergent sources that have been multiplied, divided, or raised to integer

powers. This helps explain why certain sets of accounting numbers often appear to

2It is not possible to match an individual vote record (an individual ballot image) with a particular voting
transaction.

3



closely follow a Benford distribution. Accounting numbers are often the result of a

mathematical process. A simple example might be an account receivable which is a

number of items sold (which comes from one distribution) multiplied by the price per

item (coming from another distribution).” (Durtschi et al. 2004, 20–21)

The complexity rationale runs afoul of the way behavioral political scientists usually think

about voting. Students of voting behavior have developed a repertoire of models built on the idea

that each individual’s vote choice is essentially a coin flip (i.e., a stochastic choice), with the

election outcome being simply the result of adding all the coin flips together. For different people

the probabilities of the various outcomes are different, and for some elections the coin many have

more sides than two. But the overall vote counts are seen as merely the sum of all the different

coin flip outcomes. Such a sum of random coin flips lacks the kind of complexity needed to

produce the Benford’s Law pattern in the vote counts’ digits. Taking voter turnout decisions into

account does not essentially change the basic coin flip idea. In this case, to produce the coin flip

probabilities the probability that each person votes is multiplied by the conditional probability

that the person makes a particular choice among the candidates or ballot initiative options.

One can see this standard behavioral perspective at work in the analysis used to support the

conclusions reached about the Venezuelan referendum by the Carter Center. This is most explicit

in the analysis reported by Taylor (2005). Taylor writes, “we use the multinomial model (4) of a

‘fair election’ and find that its significant digit distribution is virtually identical to the observed

distribution, which is different than Benford’s Law” (Taylor 2005, 22). Taylor also generates data

using a Poisson model. As a general matter these two models are essentially the same—as Taylor

(2005, 9) observes, the multinomial arises upon conditioning on the total of a set of Poissons.

Neither has the complexity needed to produce digits that follow Benford’s Law.

The kind of complexity that can produce counts with digits that follow Benford’s Law refers

to processes that are statistical mixtures (e.g., Janvresse and de la Rue (2004)), which means that

random portions of the data come from different statistical distributions. There are some limits

that apply to the extent of the mixing, however. If the number of distinct distributions is large,

then the result is likely to be well approximated by some simple random process that does not

satisfy Benford’s Law. So if we are to believe that in general Benford’s Law should be expected to
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describe the digits in vote counts, we need to have a behaviorally realistic process that involves

mixing among a small number of distributions.

Another important issue concerns whether Benford’s Law should be expected to apply to all

the digits in reported vote counts. In particular, for precinct-level data there are good reasons to

doubt that the first digits of vote counts will satisfy Benford’s Law. Brady (2005) develops a

version of this argument. The basic point is that often precincts are designed to include roughly

the same number of voters. If a candidate has roughly the same level of support in all the

precincts, which means the candidate’s share of the votes is roughly the same in all the precincts,

then the vote counts will have the same first digit in all of the precincts. Imagine a situation

where all precincts contain about 1,000 voters each, and a candidate has the support of roughly

fifty percent of the voters in every precinct. Then most of the precinct vote totals for the

candidate will begin with the digits ‘4’ or ’5.’ This result will hold no matter how mixed the

processes may be that get the candidate to roughly fifty percent support in each precinct. For

Benford’s Law to be satisfied for the first digits of vote counts clearly depends on the occurrence

of a fortuitous distribution of precinct sizes and in the alignment of precinct sizes with each

candidate’s support. It is difficult to see how there might be some connection to generally

occurring political processes. So we may turn to the second significant digits of the vote counts,

for which at least there is no similar knock down contrary argument.

Benford’s Law Test Example

For an example that illustrates these ideas, consider an application to votes recorded in the 2004

general election in Miami-Dade County, Florida. I examine the votes cast for the Republican and

Democratic candidates for president (George W. Bush and John F. Kerry) and for U.S. Senator

(Mel Martinez and Betty Castor). I also examine the votes Yes or No for eight state consitutional

amendments that appeared on the ballot in Florida in 2004. These amendments are described in

Table 2. As can be seen from the statewide vote counts shown in Table 2, all eight amendments

passed, and most passed by a wide margin. Only the vote regarding Amendment 4 was somewhat

close.

*** Table 2 about here ***

Because we are examining the results for tests for several different votes, we should adjust the
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test level we apply to hypothesis tests to take into account the false discovery rate (FDR)

(Benjamini and Hochberg 1995; Benjamini and Yekutieli 2005). I use the form of the FDR that

assumes independence across tests. Benjamini and Hochberg (1995) define this FDR as follows.

Let t = 1, . . . , T , T = 20, index the votes for a candidate or for or against an Amendment, and let

the significance probability of the test statistic for each vote be denoted St. Sort the values St

from all T types of votes from smallest to largest. Let S(t) denote these ordered values, with S(1)

being the smallest. For a chosen test level α (e.g., α = .05), let d be the smallest value such that

S(d+1) > (d + 1)α/T . This number d is the number of tests rejected by the FDR criterion. If

assumptions hypothesized to define the tests hold, then we should observe d = 0.

Using the precinct-level counts for votes cast on election day, Table 3 reports Pearson

chi-squared statistics for two kinds of tests. First is whether the distributions of the first digits of

the precinct vote counts for the major party candidates for president and for U.S. Senator and for

the eight constitutional amendments on election day 2004 in Miami-Dade match the distribution

specified by Benford’s Law. Second is whether the first digits occur equally often. For Benford’s

Law tests of the first or second significant digits, let qBki denote the expected relative frequency

with which the k-th significant digit is i. For k = 1, the qB1i values are the values shown in the

first line of Table 1. Let dki be the number of times the k-th digit is i among the J precincts

being considered, and set d1 =
∑9

i=1 d1i. The statistic for a first-digit Benford’s Law (1BL) test is

X2
B1

=

9∑

i=1

(d1i − d1qB1i)
2

d1qB1i

.

For the test that first digits occur equally frequently, the test statistic is

X2
E1

=

9∑

i=1

(d1i − d1/9)
2

d1/9
.

Assuming independence across precincts, these statistics may be compared to the χ2-distribution

with 8 degrees of freedom.3 That distribution has a critical value of 15.5 for a .05-level test, and

the critical value using α = .05 for each test but taking the FDR with T = 20 into account is 23.8.

Because all of the statistics reported in Table 3 greatly exceed that value, the hypothesis that the

3The consequences of dependence are unclear. In other contexts such dependence may tend to produce sample
statistics that are either excessively large or excessively small relative to the nominal χ

2-distribution.
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first significant digits follow a 1BL distribution may be handily rejected, as may be the hypothesis

that the nine values (1–9) occur equally often.

*** Table 3 about here ***

In contrast, consider Table 4, the first two columns of which reports Pearson chi-squared

statistics for tests of the distribution of the precinct vote counts’ second significant digits. For

k = 2, the qB2i values are the values shown in the second line of Table 1, and d2 =
∑9

i=0 d2i. The

statistic for a second-digit Benford’s Law (2BL) test is

X2
B2

=
9∑

i=0

(d2i − d2qB2i)
2

d2qB2i

.

For the test that second digits occur equally frequently (2EL), the test statistic is

X2
E2

=

9∑

i=0

(d2i − d2/10)
2

d2/10
.

These statistics may be compared to the χ2-distribution with 9 degrees of freedom (χ2
9), which

has a critical value of 16.9 for a .05-level test. Using α = .05 for each test but taking into account

the FDR with T = 20, the critical value is 25.5 (using α = .10 the critical value is 23.6). The

results give little reason to doubt that a 2BL distribution applies. Two of the twenty statistics are

larger than 16.9, but no statistic is larger than 25.5. The largest X 2
B2

value in the first column of

Table 4 is 17.9. The results give some reason to doubt that 2EL describes the vote counts. The

largest X2
E2

value in the second column of Table 4 is 25.3.

*** Table 4 about here ***

The remaining columns of Table 4 show that what works for precincts need not work for

voting machines. The middle columns report the results of applying the tests to the vote counts

on the election day voting machines. Noting that some voting machines recorded votes from more

than one precinct, the last two columns show results from applying the tests to vote counts for

each unique precinct-machine combination. Both forms of the analysis firmly reject the idea that

2BL describes the vote counts on election day voting machines in Miami-Dade.
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Generating Counts that Satisfy the Second-digit Benford’s Law

Is there a family of processes that are behaviorally plausible and that are capable of producing

precinct-level vote counts that satisfy 2BL but not 1BL? Can we explain why such a process

would produce precinct counts that satisfy 2BL but not machine counts that do so? In this

section I consider the first question. In the next section I take up the question of machine counts.

There are at least two behaviorally plausible mechanisms that generate counts that satisfy

2BL but not 1BL. Both mechanisms feature mixtures of a small number of component

distributions. Use of the 2BL test to detect election fraud or other vote count anomalies might be

based on the idea that precinct-level vote counts observed in actual elections typically reflect the

combined action of versions of these mechanisms.

The first mechanism has voters who make choices that are subject to small frequencies of

mistakes. The frequency of making mistakes varies across precincts but is constant in each

precinct. There are three types of voters: voters who intend to favor the referent alternative,

voters who intend to oppose the alternative and voters who intend to choose at random among

alternatives. All precincts have the same number of voters, but the proportion of voters of each

type varies across precincts according to a function of a uniform distribution.

The second mechanism features precincts whose sizes vary according to a function of a uniform

distribution across precincts. There are three types of voters. The propensity of the voters of each

type to choose the referent alternative is arbitrary but constant across precincts. The proportion

of voters of each type varies across precincts according to a function of normal distributions.

Here is an R (R Development Core Team 2003) function that implements an example of the

first mechanism. The function generates counts for nprecincts simulated precincts, each

containing size voters.

mechA <- function(size, nprecincts=500, mf=1/3, lgp=1, hgp=1, lb=4, ha=4) {

lgb <- exp(lgp)/(exp(lgp)+exp(hgp)+1);

hgb <- exp(hgp)/(exp(lgp)+exp(hgp)+1);

mgb <- 1/(exp(lgp)+exp(hgp)+1);

sapply(1:nprecincts, function(x){

p3 <- c( rbeta(1,1/2,lb), mf, rbeta(1,ha,1/2) );

q <- runif(1,0,1);

pf <- c(q*lgb, mgb, (1-q)*hgb );

sum(size * p3 * pf/sum(pf))
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})

}

For each simulated precinct, the vector p3 contains three numbers. The first element of p3, drawn

from the beta distribution B(1/2, lb), represents the proportion of voters who intend not to vote

for the referent alternative but nevertheless do so. The third element of p3, drawn from the beta

distribution B(ha, 1/2), represents the proportion of voters who intend to vote for the referent

alternative who in fact do so. The extent to which p3[1] > 0 and p3[3] < 1 reflects the extent to

which voters of the respective type make consequential mistakes. The second element of p3,

which is constant and set by the argument mf, indicates the proportion of voters who are choosing

at random who select the referent alternative. The default value mf = 1/3 might reflect the

situation where there are two alternatives—say to vote either Yes or No on a constitutional

amendment—and each voter of the at-random type has an equal chance of either selecting one of

those or not selecting either one. The vector pf determines the proportion of the voters in each

precinct who are of each type. The expected proportions are set by the arguments lgp and hgp

through a logistic function, but the proportion realized in each precinct depends on the uniformly

distributed variable q, q ∼ U [0, 1]. With the default values lgp = hgp = 1, the expected

proportions of voters of each types are approximately pf/sum(pf) = (0.366, 0.269, 0.366).

The following R function implements an example of the second mechanism. Again the

function generates counts for nprecincts simulated precincts, but now the size parameter does

not correspond to the number of voters in each precinct.

mechB <- function(size, nprecincts=500, mf=1/3, onen=1, twon=1, onev=1, twov=1) {

sapply(1:nprecincts, function(x){

p3 <- c(0,mf,1);

onex <- rnorm(1, onen, onev);

twox <- rnorm(1, twon, twov);

pf <- c( exp(onex), 1, exp(twox) )/(exp(onex)+exp(twox)+1);

q <- runif(1,0,1);

c(q * size * sum(p3 * pf))

})

}

The three numbers in the vector p3 again represent the proportion of the voters of each type who

vote for the referent alternative, but now these values are constant across precincts. In the

current example the values correspond to no votes for the alternative from voters of the first type,
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all the votes for the alternative from voters of the third type, and mf of the middle type votes for

the alternative. The vector pf again determines the proportion of the voters in each precinct who

are of each type. Now these proportions vary across precincts through a logistic function with

arguments determined by a pair of random normal variables. A uniformly distributed variable q,

q ∼ U [0, 1] determines the number of voters in each precinct, through the construction q * size,

so the expected precinct size is size/2.. With the default values onen = twon = 1, the expected

proportions of voters of each types are approximately pf = (0.422, 0.155, 0.422).

The interpretations of the processes the two mechanisms specify are not completely

orthogonal. In particular, the three types of voters featured in the second mechanism might be

considered to be produced by assigning all of the first mechanism’s first or third types who vote

for the alternative to the second mechanism’s third type, and assigning all of the first

mechanism’s first or third types who do not vote for the alternative to the second mechanism’s

first type. The essential difference between the mechanisms is that precinct sizes are constant in

the first mechanism but they vary in the second mechanism. So in some respects the second

mechanism might be considered a generalization of the first. Notice, however, that if the variation

in q is eliminated in the second mechanism—e.g., by setting q = 1/2—then the resulting function

no longer produces counts that satisfy 2BL.

The two mechanisms are supposed to represent the results of processes that happen at the

instant each vote is cast. Of course, timing is not specified in either mechanism, so this

supposition is a matter of interpretation. There may be a latency between the time the voter acts

to cast a vote and the time the vote is effectively recorded. Voters who decide not to cast a vote

for any of the alternatives presented for a particular office or ballot initiative may be deemed to

have acted at the time of their final opportunity to cast a vote. The decision and choice processes

that are usually the focus of behaviorally minded studies of voting are to be considered as

determining the numbers of voters who are of each type in the various precincts. That is

size ∗ pf/sum(pf) in mechA and q ∗ size ∗ pf in mechB. In this way the two mechanisms are

compatible with a very wide range of models of and ideas about voter behavior. The mechanisms

constrain such models very little, if at all, except that each mechanism requires in its own way

substantial variation across precincts.

These two mechanisms produce counts that satisfy 2BL for a wide range of parameter values
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and precinct size specifications. Tables 5 and 6 show the results of a small Monte Carlo

simulation exercise using function machA. The parameter denoted Size in the table refers to the

size argument, which is the number of voters in each precinct. In these simulations I set

lb = 500 and ha = 500, which represent very small voter error rates: the expected values for p3[1]

and p3[3] are p3[1] = 0.000999 and p3[3] = 0.999. I set mf = 1/2. For the simulations of Table 5 I

set lgp = 3, hgp = 2, and for Table 6 I set lgp = 2.5, hgp = 1. In each Monte Carlo replication

there are 1000 simulated precincts.

*** Tables 5 and 6 about here ***

In most cases in Table 5, the simulated vote counts satisfy 2BL. The only exceptions are for

Size values in the range from 1,400 to 1,800. In Table 6 the simulated vote counts satisfy 2BL for

all the indicated Size values, from 500 up to 10,000. In both tables one can see that the second

digits of the simulated counts very often deviate significantly from 2EL. While not reported in the

tables, it is noteworthy that counts simulated using mechA never satisfy 1BL.

Simulations using function mechB also produce counts that satisfy 2BL for a wide range of

parameter values and size specifications. Indeed, if the normal distribution variance terms onev

and twov are sufficiently large, the function almost always produces 2BL counts. The indicated

default values onev = twov = 1 are sufficiently large to produce this effect. Counts simulated

using mechB never satisfy 1BL.

Second-digit Benford’s Law and Voting Machine Vote Counts

The mechanisms that generate 2BL counts at the precinct level do not do so at the level of voting

machines because the way voters are often assigned to machines makes the counts on the different

machines used for a precinct very similar for most of the machines but slightly or very greatly

different for a few of them. The mechanism that produces this effect might be thought of using

the phrase “roughly equal division with leftovers” (REDWL).

To see the general idea I mean to capture by REDWL, consider the plots of voting machine

usage times shown in Figure 1. The plots show the times at which votes were cast on each voting

machine on election day in four Miami-Dade precincts. Each row of letters in each plot indicates

the time at which a “vote cast” transaction occurs for a voting machine in the event log files, with

a letter being plotted at each point when a vote was recorded. There is one row of letters for each
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voting machine used in each precinct. Times are shown using a 24-hour clock and resolved to the

second. In precinct 109, most of the machines were used throughout the day, but the machine

labeled “e” was not used after 10am, and the machine labeled “k” was used much less often in the

afternoon than in the morning. A reasonable guess is that the machine was pulled from service at

that time. In precinct 233, the machine labeled “c” was not used after 8am, and the machine

labeled “f” was not used before 2pm. In precinct 322, the machine labeled “b” was used only

between 11:30am and 2:30pm. In precinct 326, the machines labeled “g” and “m” were used only

after 1pm, and the machine labeled “p” was used heavily only after 6pm.

*** Figure 1 about here ***

These and other plots of machine usage times I have examined suggest the machines might be

separated into two categories, namely machines that are fully occupied pretty much throughout

election day versus the rest. The set of machines that are not fully occupied throughout the day

might be further subdivided into a set that is used heavily during some periods but only

sporadically at other times, and a set that is not use at all throughout much of election day. In

any case, REDWL reflects the idea that most of the votes in a precinct are recorded on a subset

of the machines, with the votes being roughly equally distributed among those machines, while

the remaining votes are scattered among the rest of the machines. A minimal indicator that

REDWL is a concern is that the total number of votes cast on some machines is similar among

the machines and noticeably higher (or lower) than the number cast on the rest of the machines.

A simple modification of one of the mechanisms previously seen to generate precinct-level 2BL

counts illustrates how the REDWL mechanism tends to produce voting machine counts that do

not satisfy 2BL, even when the process that is taking place in the precinct as a whole does

produce 2BL counts. Consider the following augmented version of mechA:

mechAm <- function(size, nprecincts=500, mf=1/3, lgp=1, hgp=1, lb=4, ha=4) {

lgb <- exp(lgp)/(exp(lgp)+exp(hgp)+1);

hgb <- exp(hgp)/(exp(lgp)+exp(hgp)+1);

mgb <- 1/(exp(lgp)+exp(hgp)+1);

pb <- ceiling(size/250);

sapply(1:nprecincts, function(x){

p3 <- c( rbeta(1,1/2,lb), mf, rbeta(1,ha,1/2) );

q <- runif(1,0,1);

pf <- c(q*lgb, mgb, (1-q)*hgb );

sumv <- sum(size * p3 * pf/sum(pf))

12



# allocate votes to the pb machines

mbeta <- rbeta(pb, 20,20*pb);

mbmean <- 1/(pb+1);

mtrunc <- ifelse(mbeta < mbmean, mbeta, mbmean);

sumv * mtrunc/sum(mtrunc);

})

}

The sumv values are precinct counts generated exactly as in mechA. The votes for the alternative

in each precinct are divided among pb machines, where pb is determined as a function of the size

of each precinct. There is roughly one machine for every 250 voters. In each precinct, pb random

(Beta-distributed) values mbeta are generated, where the expected value of mbeta is

mbmean = 1/(1 + pb). Values of mbeta greater than mbmean are set equal to the mean value, while

values of mbeta smaller than mbmean are left unchanged. Each precinct’s votes for the alternative

are assigned to voting machines in proportion to this vector of truncated values.

Running a small Monte Carlo simulation exercise using function machAm with the same

parameters that were used to compute the simulations reported in Table 6 shows that the

REDWL mechanism in most cases destroys the 2BL property of the simulated counts. Results of

this simulation are reported in Table 7. In contrast to the results in Table 6, the results in Table

7 show departures from 2BL for most precinct sizes. The only exceptions are for Size values

size = 500 and size = 700. Running the simulation with different numbers of voting machines

per voter does not materially change the results. Similar results are also obtained if the largest

machine counts are not constrained to be exactly the same. For instance, we get similar results if

instead of defining

mtrunc <- ifelse(mbeta < mbmean, mbeta, mbmean);

we use

mtrunc <- ifelse(mbeta < mbmean, mbeta, runif(pb,.95*mbmean,mbmean));

In this case the top machine proportions do not all have the value mbmean but instead vary

uniformly on the interval [.95 ∗ mbmean, mbmean].

*** Table 7 about here ***

I conclude from such demonstrations that while under normal circumstances we might expect

vote counts from precincts to satisfy 2BL, we should not expect vote counts from voting machines
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to do so, if several voting machines are typically used in each precinct and if the total number of

votes cast on each machine exhibits signs of the REDWL mechanism.

Can the Second-digit Benford’s Law Detect Election Fraud?

Do relatively large X2
B2

values for precinct-level vote counts suggest the counts have been

fraudulently manipulated? The simulations reported in Tables 5 and 6 suggest that an electorally

intelligible and benign process can produce counts that often satisfy the 2BL. Suppose we take a

process that we know usually produces such counts and perturb it in ways that mimic some ways

vote fraud may occur. Does the 2BL test signal that there has been a distortion? If so, we might

conclude that the relatively large X2
B2

values suggest that maybe there has been fraud. Because

significant perturbations may occur in the absence of fraud, such a result can do no more than

suggest the possibility of fraud. But if the 2BL test does not catch perturbations that we inject

into otherwise pristine data, then of course the test is not useful for detecting vote fraud. In this

case clean precinct-level results should not give us any comfort.

I present illustrative simulations regarding 12 kinds of manipulations of vote counts. The

simulations use a rubric of votes being switched from one candidate to the another, although the

vote-switching perspective is not necessary for the results to be meaningful. In cases where a

candidate is simulated as gaining votes, the added votes might in some cases be considered not to

come from another candidate but simply to be introduced independent of anything that is

happening to other candidates’ votes. Such a reinterpretation may be especially appropriate in

relation to the simulations that use what I refer to as “repeaters,” because in those cases the

number of votes being added does not depend on the number of votes the other candidates are

receiving. In cases where a candidate is simulated as losing votes, the added votes might be

considered as simply disappearing. This might correspond to situations where there are

intentionally or accidentally spoiled or lost ballots.

Table 8 gives an overview of the simulated manipulations. The simulations all feature two

candidates in a simulated election where the expected outcome is a tie. Votes may be added to or

subtracted from a candidate, with consequently the same number of votes being subtracted from

or given to the other candidate. The vote shifts may occur in all precincts, only in those precincts

where the first affected candidate receives more votes than expected or only in those precincts
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where the first affected candidate receives fewer votes than expected. The votes the first affected

candidate receives (or loses) may be either a proportion of the votes the other candidate would

otherwise have received or a proportion of the total number of voters in the precinct. These latter

cases are the ones I describe as having “repeaters.”

*** Table 8 about here ***

My conception of repeaters harks back to the classic manipulation Gumbel (2005) describes as

having been perfected by several American city political machines in the late nineteenth and early

twentieth centuries. Repeaters in the nineteenth century’s Tammany Hall were the primary

referents of the familiar phrase, “vote early and often.” As Gumbel writes, “The repeaters carried

changes of clothing, including several sets of coats and hats, so they could plausibly come forward

a second or third or fourth time in the guise of an entirely new person.... Many of the repeaters

sported full beards at the beginning of the day, only to end it clean-shaven” (Gumbel 2005, 74).

Nowadays repeaters might simply be a few lines of computer code.

The simulations are based on the first mechanism that produces 2BL counts. The following R

function gives the simulations’ typical form.

mechA2p <- function(size, nprecincts=500, mf=1/3, lgp=1, hgp=1, lb=4, ha=4, fa=0) {

mp <- meanAp(lgp=lgp, hgp=hgp, mf=mf, lb=lb, ha=ha);

lgb <- exp(lgp)/(exp(lgp)+exp(hgp)+1);

hgb <- exp(hgp)/(exp(lgp)+exp(hgp)+1);

mgb <- 1/(exp(lgp)+exp(hgp)+1);

sapply(1:nprecincts, function(x){

p3mat <- matrix(c(rbeta(1,1/2,lb), mf, rbeta(1,ha,1/2),

rbeta(1,ha,1/2), mf, rbeta(1,1/2,lb)),

2, 3, byrow=TRUE );

p3mat <- apply(p3mat,2,function(v){ ifelse(sum(v)>c(1,1), v/sum(v), v) });

p3 <- c( rbeta(1,1/2,lb), mf, rbeta(1,ha,1/2) );

q <- runif(1,0,1);

pf <- c(q*lgb, mgb, (1-q)*hgb );

y <- c(size*p3mat %*% pf/sum(pf));

chg <- ifelse(y[1] > size*mp, fa*y[2], 0);

y <- y + c(chg,-chg);

ifelse(y < 0, 0, y);

})

}

For each simulated precinct the function computes vote counts for two candidates, the votes for

each having the attributes of counts produced by mechA. A function meanAp computes the

15



proportion of the votes the first candidate is expected to receive, and the resulting expectation is

assigned to mp. The line

chg <- ifelse(y[1] > size*mp, fa*y[2], 0);

defines a change value for each precinct that equals a proportion fa times the votes received by

the second candidate if the first candidate’s vote count is greater than the expected count

size*mp, and otherwise the change value equals zero. In the case where the vote shifts occur in

all precincts, the expectation is ignored and the change value is defined by

chg <- fa*y[2];

The value fa*y[2] corresponds to the proportional vote switch scenario. For the repeater

scenario that value is replaced with fa*size. To define a simulated election that would be

expected to be a tie (i.e., very close) in the absence of any manipulations, I set the parameter

values size = 2500, lgp = 2, hgp = 2, mf = 1/3, lb = 4 and ha = 4.

The first set of results, reported in Table 9, shows what happens when votes are

proportionally added to the first candidate in all precincts. I present results for, respectively, 500,

1,000 and 2,000 simulated precincts. The fraction of votes shifted ranges from zero (no

manipulation) to a substantial fa = .15. In this scenario the 2BL test does not detect that votes

have been added to the first candidate. The 2BL test starts to signal the losses being suffered by

the second candidate only when they are fairly substantial and the number of precincts is large.

With 2,000 precincts and a switched fraction of seven percent or smaller, the average of X 2
B2

is

smaller than the critical value for χ2
9 for a test at level α = .05, which is 16.9. But X2

B2
is

expected to exceed that critical value if fa ≥ .08.

*** Table 9 about here ***

Table 10 shows that having the proportional additions occur only in precincts where the first

candidate’s support is either particularly strong or particularly weak makes the vote switching

much more susceptible to detection by the 2BL test. With 2,000 precincts, the 2BL test tends to

be triggered by the first candidate’s vote counts when as few as three percent of the votes are

being switched. With 500 precincts the 2BL test tends to be triggered when six or seven percent

of the votes are being switched. Tests of the second candidate’s vote counts are substantially less
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sensitive when the votes are being taken from that candidate in precincts where the other

candidate is strong, and somewhat less sensitive when the votes are being taken in precincts

where the other candidate is weak.

*** Table 10 about here ***

Table 11 shows that the 2BL detectability of repeater additions in all precincts is similar to

the detectability of proportional additions. But in Table 12 it is apparent that repeater additions

that occur in the first candidate’s areas of either relative strength or relative weakness are more

readily detected than the corresponding proportional additions are. With 2,000 precincts,

switching as little as two percent of the vote in the affected precincts tends to produce X 2
B2

values

for the first candidate’s vote counts that are greater than the α = .05 critical value for χ2
9. Tests

of the second candidate’s vote counts are somewhat less sensitive.

*** Tables 11 and 12 about here ***

Table 13 shows that proportional substractions in all precincts are if anything slightly less

detectable than the corresponding proportional additions are. Even with 2,000 precincts, such

subtractions do not tend to produce large X2
B2

values for either candidate. As Table 14 shows,

however, having the proportional subtractions occur only in precincts where the first candidate’s

support is either particularly strong or particularly weak makes the vote switching much more

susceptible to detection. With 2,000 precincts, the 2BL test triggers with as little as a two

percent subtraction from the counts in the first candidate’s strongest precincts.

*** Tables 13 and 14 about here ***

Tables 15 and 16 show that the 2BL detectability of repeater substractions is comparable to

that of repeater additions. Indeed, Table 16 shows that with 2,000 precincts a repeater

subtraction amounting to one percent of the voters is detectable by a 2BL test of the first

candidate’s vote counts, if the first candidate’s strongest precincts are the ones affected.

Detectability is only slightly less when the manipulations are directed at the first candidate’s

weakest precincts.

*** Tables 15 and 16 about here ***

On the whole the simulations suggest that the 2BL test can be highly sensitive to additions or

subtractions from candidates’ precinct-level vote totals. Sensitivity in the considered scenario of

an extremely close election is generally weaker when manipulations equally affect all precincts.
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For such pervasive changes in vote counts, the 2BL test is sometimes not at all sensitive given the

number of precincts considered here. But when manipulations are concentrated in either one

candidate’s strongest or weakest precincts, the 2BL test can produce significant results when even

very small shares of the vote are switched. In some instances, with 2,000 precincts, changes are

detectable when they are as small as one or two percent of either the votes the other candidate

received or the number of voters in each precinct. The 2BL test can in this sense sometimes—not

always—detect changes in vote counts that are just large enough to change the outcome of a very

close election.

More Data from Florida 2004

Data from the 2004 election in other Florida counties repeat the patterns found for Miami-Dade.

Table 17 provides an overview of the kind of data to be considered. The table shows the number

of precincts in Miami-Dade, Broward and Pasco counties. In 2004, Miami-Dade, Broward and

Pasco counties all used Election Systems & Software “iVotronic” electronic voting machines (see

Electronic Frontier Foundation (2004)). On election day, some voting machines were used to

record votes from more than one precinct. This occurred in cases where more than one precinct

shared a polling place. Most voting occurred on election day, November 2, 2004, but votes were

also cast during a 15-day early voting period (October 18 through November 1, 2004). Table 17

also shows the number of early voting sites used in each county (earlyvoting.org 2004;

Miami-Dade County 2004; Browning 2004). In Broward and Pasco, voters from all precincts could

vote at any early voting site. In Miami-Dade, voters from each precinct could vote only at

selected early voting locations. At early voting sites in Miami-Dade, each voting machine was

used for voters from multiple precincts. The voting data for the early voting period do not

directly indicate the voter’s precinct but instead indicate which of several ballot styles the voter

used. Table 17 shows the number of styles used during early voting for each county. The event log

files do not contain any indication of the physical location where each voting machine was used

during the early voting period. I use Personal Electronic Ballot (PEB)4 codes recorded in the

event log files to group machines together, the idea being that machines for which the same PEB

4For a description of how PEBs are used in Election Systems & Software “iVotronic” voting machines, see (Elec-
tronic Frontier Foundation 2004).
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was used must have been located at the same early voting site.

*** Table 17 about here ***

A concern with early voting is that not every voting machine was used every day during the

early voting period. I use the event log files to identify the dates during the early voting period

when each voting machine was used. I group machines together only if they were used on all the

same days. The “site-days” entries in Table 17 show the number of unique combinations of the

PEB-based location groupings with these date goupings in Broward and Pasco, and the

“style-site-days” entry shows the number of unique combinations of the PEB-based location and

ballot style groupings with the date goupings in Miami-Dade. These serve as the “precincts” for

the early voting vote counts. The “site-day-machines” and “s-s-d-machines” (for

“site-style-day-machines”) entries show the number of unique combinations of the site-days or

style-site-days groupings with voting machines.

Applying the 2BL test to other vote count data from the 2004 election in Florida mostly

suggests that 2BL applies to the data, but a few results raise questions. Table 18 reports results

based on data from early voting in Miami-Dade. Applying the FDR to the twenty tests for

site-style-days, the results look fine if we use a single-test level of α = .05, since no X 2
B2

value is

greater than 25.46, but the results are problematic if α = .10: X 2
B2

for the Amendment 7 Yes

votes is 24.6, which is greater than 23.6. The election day precinct results for Broward, shown in

Table 19, are similar. They are fine using the FDR with α = .05 but problematic using α = .10:

two of the Amendment vote counts have X2
B2

> 23.6. The Broward early voting results for counts

at the level of ballot styles are fine if the FDR is used. The largest X 2
B2

value among these early

voting tests is X2
B2

= 21.4, for the votes for Kerry. The election day results for Pasco, shown in

Table 20, have one value of X2
B2

large enough to reject the hypothesis that 2BL applies even using

the FDR among the twenty tests with α = .05. This is the value X 2
B2

= 29.5, which occurs for the

Amendment 7 Yes votes. Considered on their own and using the FDR for twenty tests, the early

voting machine-precinct results for Pasco are fine.

*** Tables 18, 19 and 20 about here ***

The results for voting machines in Tables 18, 19 and 20 further illustrate that the 2BL

property mostly does not apply to the vote counts on machines in these Florida counties. The

case that comes closest to being an exception is the machine results for early voting in Broward.
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Many of those X2
B2

values are unproblematically small, but three are larger than the χ2
9 critical

value for a single test at level α = .05, and two are large even when we use the FDR. For the

Amendment 8 Yes votes we have X2
B2

= 27.9, which is larger than the critical value for the FDR

for twenty tests with α = .05, and for the Amendment 7 Yes votes we have X 2
B2

= 44.0, which is

very large by any standard.

The value X2
B2

= 29.5 that occurs for the election day precinct data from Pasco is large

enough to count as a rejection of the 2BL hypothesis even using the FDR among all 60 of the

election day tests, pooling across the three counties: the quantile of χ2
9 corresponding to a tail

probability of .05/60 is 28.35. Pooling over all 120 of the election day precinct and early voting

site-style-day, style and machine-precinct tests, the value X 2
B2

= 29.5 is not problematic according

to the FDR with α = .05, since the quantile of χ2
9 corresponding to a tail probability of .05/120 is

30.13. But using α = .10 we again have a problem even when pooling over all 120 tests, because

using the FDR we again arrive at the χ2
9 quantile of 28.35.

Data from Mexico 2006

The 2006 election in Mexico has proven to be highly controversial. A very close outcome between

the top two finishers in the presidential election led to calls from Democratic Revolution Party

(PRD) candidate Andrés Manuel López Obrador for a manual recount of all 41 million ballots.

The declared winner, National Action Party (PAN) candidate Felipe Calderón, officially has

15,000,284 votes while López Obrador has 14,756,350. As of the time of this writing Calderón has

declared willingness to support a recount if that is ordered by the Federal Electoral Tribunal

(TRIFE), but expresses doubt that the results would change or that a recount of all the ballots is

in any case necessary (Associated Press 2006b,a). Other parties receiving votes in the election

include the Institutional Revolutionary Party (PRI), the Social-Democratic and Rural Alternative

Party (ASDC) and the New Alliance Party (NA). In the presidential voting these parties received,

respectively, 9,301,441 (22.3 percent), 1,127,963 (2.7 percent) and 401,804 (1.0 percent) votes.

Here I present 2BL test results for votes results at two levels of aggregation, “secciones,”

which correspond to precincts, and “casillas,” which correspond to voting machines.5 The

5I downloaded official vote count data from the website of the Instituto Federal Electoral (IFE),
http://www.ife.org.mx/, on July 13, 2006.
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Mexican election used paper ballots, so these “machines” in fact correspond to the boxes into

which voters placed their ballots. Typically there are multiple casillas for each seccion. In each

seccion voters are assigned to casillas based on each voter’s name, not haphazardly as often occurs

in elections in the United States. Inspecting the total numbers of ballots cast at each casilla

shows patterns that suggest the REDWL mechanism should be a concern. Hence the 2BL test is

likely to appropriate for seccion-level vote counts but not for casilla-level counts.

Table 21 shows seccion-level 2BL test results. The first row of the table reports results

considering all the secciones from across the whole country as one set. The X 2
B2

statistics are

larger than the χ2
9 critical value for test level α = .05 for four of the five parties. For ASDC the

statistic is larger than the critical value for test level α = .1. The remaining rows of the table

show results separately for the secciones in each of Mexico’s 32 states. In this case, taking into

account the FDR for 32 separate tests gives an adjusted critical value of 26.7 for level α = .05 and

a value of 24.9 for level α = .1. The FDR for all 160 separate tests gives critical values of 30.9 and

29.1 respectively for levels α = .05 and α = .1. For each party there are X 2
B2

statistics larger than

these FDR-adjusted critical values. For the two largest parties areas in Mexico city (the state

Mexico) are particularly problematic, but a few other areas also show high values for X 2
B2

.

Notably, for all but the smallest party (NA), most of the X 2
B2

values are smaller than even the

single-test critical values.

*** Table 21 about here ***

Table 22 shows that an analysis at the casilla level conveys a very different impression. Now

most of the X2
B2

values are large. The difference between the 2BL tests for the casilla and seccion

vote counts mirrors the difference observed in the Florida counties between the voting machine

and precinct vote counts. In both cases the REDWL mechanism is the most likely explanation for

why the lower level of aggregation produces systematically worse results. The worse casilla results

therefore probably do not signal more widespread or more serious problems than the seccion-level

results do.

*** Table 22 about here ***

The 2BL test results for secciones certainly suggest there are problems with the 2006

presidential vote counts in many Mexican states, although probably not in most of them. More

refined analysis is needed to reach sharper conclusions, but the general impression is that more
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intensive investigation of the election results is in order. That might include doing a manual

recount of many—perhaps all—of the individual ballots. A cost efficient method may be to begin

by recounting a random sample of the ballots—all the ballots in a sample of secciones—where the

probability that a seccion is selected for recounting is greater in places where the 2BL test results

are worse. For such an exercise it may be reasonable to conduct 2BL tests for secciones collected

into sets that correspond to the legislative districts they are part of, with sampling for purposes of

initial recounting done at the level of districts. Perhaps a two-stage sampling plan could be used,

with districts selected at the first stage (weighted by the 2BL test results) and secciones within

each district selected at the second stage. If such an initial sampling did identify problems with

the vote tabulations, then the case for a comprehensive manual recount would become extremely

strong.

Discussion

Tests based on the second-digit Benford’s Law show strong promise to become a standard tool for

detecting fraudulent election results. The 2BL test cannot detect all kinds of fraud, and significant

2BL test results may occur even when vote counts are in no way fraudulent. But one should

perhaps not expect too much from a test that has only the vote counts themselves to work with.

An important apparent limitation of the 2BL test is that it seems not to be suitable for

checking voting machine level counts, at least not when the way voters are assigned to machines

brings the REDWL mechanism into play. An idea worth investigation is whether strict random

assignment of voters to machines can avoid the REDWL mechanism, so that 2BL tests would be

informative at the level of individual voting machine counts. The few simulations I have

conducted so far suggest that such an approach might be effective.

Data Note

David Dill supplied ballot and event log files recovered from electronic voting machines in

Broward, Miami-Dade and Pasco counties. The files were originally obtained by Martha

Mahoney. The ballot files indicate the choices made for each office by each voter and include

labels identifying for each ballot the voting machine and the precinct (for election day ballots) or

ballot style (for early voting ballots). The event log files show the time (resolved to the second) at
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which various transactions occurred on each machine, including the time at which each vote was

recorded. It is not possible to match vote choices in the ballot files to voting events in the event

log files.

Early voting polling site locations for many of the Miami-Dade machines was taken from a file

supplied by Martha Mahoney (file “ev.xls,” received by me on August 16, 2005) that was

obtained using open records requests funded by the Verified Voting Foundation. Of the 670

machines that recorded votes during early voting in Miami-Dade, 88 are not included in that file.

Two files supplied by Martha Mahoney also were used to determine which Miami-Dade machines

were operating with audio capability enabled. These are the “ev.xls” file and a file “Election.xls”

(received by me on August 16, 2005) for the machines used on election day.

The data comprise files for electronic early voting and electronic polling place votes but do not

include information about paper absentee votes.
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Table 1: Frequency of Digits according to Benford’s Law

digit 0 1 2 3 4 5 6 7 8 9
first — .301 .176 .124 .097 .079 .067 .058 .051 .046
second .120 .114 .109 .104 .100 .097 .093 .090 .088 .085

Table 2: Florida Constitutional Amendments on the Ballot in 2004

Yes No
Am. 1 Parental Notification of a Minor’s Termination of Pregnancy 4,639,635 2,534,910
Am. 2 Constitutional Amendments Proposed by Initiative 4,574,361 2,109,013
Am. 3 The Medical Liability Claimant’s Compensation Amendment 4,583,164 2,622,143
Am. 4 Authorizes Miami-Dade and Broward County Voters to Ap-

prove Slot Machines in Parimutuel Facilities
3,631,261 3,512,181

Am. 5 Florida Minimum Wage Amendment 5,198,514 2,097,151
Am. 6 Repeal of High Speed Rail Amendment 4,519,423 2,573,280
Am. 7 Patients’ Right to Know About Adverse Medical Incidents 5,849,125 1,358,183
Am. 8 Public Protection from Repeated Medical Malpractice 5,121,841 2,083,864

Note: Yes and No vote counts show statewide results.
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Table 3: Miami-Dade Election Day First-digit Benford’s Law Tests

item Benf. equal item Benf. equal

Bush 29.3 292.5 Am. 4 Yes 144.8 367.0
Kerry 39.9 287.0 Am. 4 No 119.6 605.6
Martinez 35.6 273.8 Am. 5 Yes 115.4 122.2
Castor 22.0 304.7 Am. 5 No 27.6 623.4
Am. 1 Yes 86.2 290.5 Am. 6 Yes 98.8 395.0
Am. 1 No 80.5 636.2 Am. 6 No 84.0 532.9
Am. 2 Yes 95.6 362.5 Am. 7 Yes 130.3 112.7
Am. 2 No 60.0 722.7 Am. 7 No 49.9 582.8
Am. 3 Yes 60.5 401.3 Am. 8 Yes 123.0 210.6
Am. 3 No 51.5 496.5 Am. 8 No 102.6 831.1

Note: n = 757 precincts. Each statistic is the Pearson chi-squared statistic, with eight degrees of
freedom.
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Table 4: Miami-Dade Election Day Second-digit Benford’s Law Tests

precinct-
precincts machines machines
(n = 757) (n = 5, 326) (n = 7, 064)

item Benf. equal Benf. equal Benf. equal

Bush 7.9 10.8 28.0 20.5 17.2 39.5
Kerry 9.5 14.4 61.8 10.0 44.0 13.1
Martinez 8.9 10.8 33.4 11.9 11.5 29.2
Castor 12.0 12.8 44.5 15.6 12.7 43.5
Am. 1 Yes 2.5 8.0 72.4 10.3 43.6 12.6
Am. 1 No 5.5 15.5 73.9 9.2 19.8 31.9
Am. 2 Yes 16.7 23.6 68.5 3.5 38.7 27.3
Am. 2 No 7.2 16.4 49.5 17.3 11.9 48.8
Am. 3 Yes 3.3 8.5 98.4 9.2 78.0 5.5
Am. 3 No 12.9 12.7 76.9 9.0 25.7 26.8
Am. 4 Yes 3.3 9.0 49.1 5.8 43.5 14.4
Am. 4 No 5.7 15.4 89.5 5.4 25.4 15.3
Am. 5 Yes 17.9 19.6 81.4 3.9 57.6 2.9
Am. 5 No 5.8 23.3 5.9 56.8 25.6 135.6
Am. 6 Yes 4.3 10.2 50.3 5.8 29.7 16.3
Am. 6 No 9.1 11.3 47.3 6.5 15.3 30.8
Am. 7 Yes 17.1 16.0 51.7 21.0 53.2 21.1
Am. 7 No 8.4 16.5 78.9 220.0 136.7 318.7
Am. 8 Yes 12.7 25.3 69.6 1.5 54.2 8.3
Am. 8 No 6.5 10.6 67.8 13.9 23.2 29.1

Note: Each statistic is the Pearson chi-squared statistic, with nine degrees of freedom.
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Table 5: 2BL Tests for Vote Counts Simulated Using the First Mechanism

Size Benf. equal Size Benf. equal Size Benf. equal

500 11.6 20.2 3,800 10.0 29.9 7,100 11.2 14.9
600 10.9 14.8 3,900 8.9 22.2 7,200 12.9 13.0
700 9.7 14.4 4,000 9.1 23.2 7,300 12.7 13.5
800 8.1 13.6 4,100 9.0 17.3 7,400 14.4 14.1
900 10.3 15.3 4,200 12.1 17.0 7,500 11.4 12.2

1,000 11.8 12.0 4,300 10.9 15.5 7,600 11.2 13.0
1,100 12.5 16.2 4,400 10.0 16.5 7,700 9.4 15.0
1,200 16.9 34.3 4,500 10.0 19.6 7,800 11.6 16.0
1,300 15.9 39.5 4,600 8.3 18.1 7,900 10.2 14.1
1,400 17.2 42.9 4,700 9.6 21.0 8,000 10.6 16.4
1,500 18.6 46.1 4,800 9.1 18.9 8,100 9.2 12.7
1,600 21.6 51.2 4,900 9.9 17.1 8,200 11.0 14.4
1,700 19.9 47.0 5,000 10.5 18.4 8,300 9.8 11.7
1,800 17.5 41.6 5,100 10.0 16.0 8,400 11.0 13.9
1,900 14.0 35.1 5,200 10.6 13.0 8,500 13.5 13.0
2,000 14.1 27.9 5,300 10.9 13.3 8,600 11.7 12.9
2,100 9.7 18.0 5,400 10.6 12.7 8,700 12.7 15.9
2,200 8.7 18.1 5,500 10.5 16.1 8,800 13.4 16.9
2,300 11.6 29.0 5,600 11.6 15.0 8,900 9.6 12.1
2,400 12.2 32.7 5,700 8.9 12.9 9,000 10.2 14.2
2,500 12.4 33.8 5,800 10.5 15.5 9,100 10.5 12.1
2,600 12.4 35.1 5,900 8.3 14.5 9,200 13.6 12.4
2,700 11.6 34.0 6,000 10.6 14.3 9,300 15.4 14.5
2,800 12.4 31.8 6,100 8.8 12.9 9,400 11.1 12.7
2,900 10.5 25.8 6,200 11.1 13.5 9,500 13.3 10.9
3,000 11.6 26.4 6,300 14.1 12.3 9,600 12.9 9.6
3,100 11.7 21.6 6,400 10.6 10.5 9,700 14.2 12.6
3,200 9.9 18.2 6,500 12.4 12.9 9,800 11.4 12.0
3,300 9.6 20.4 6,600 12.9 15.6 9,900 12.5 11.2
3,400 10.9 24.2 6,700 11.9 15.3 10,000 11.5 11.8
3,500 10.5 25.9 6,800 7.9 14.3
3,600 9.0 25.0 6,900 10.1 16.8
3,700 11.7 27.2 7,000 11.2 16.2

Note: Each statistic is the Pearson chi-squared statistic, with nine degrees of freedom, averaged
over 25 Monte Carlo replications. Simulations use the mechA function with size equal to the
values shown in the Size column, nprecincts = 1000, lgp = 3, hgp = 2, mf = 1/2, lb = 500,
ha = 500.
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Table 6: 2BL Tests for Vote Counts Simulated Using the First Mechanism

Size Benf. equal Size Benf. equal Size Benf. equal

500 10.3 22.5 3,800 11.3 18.7 7,100 8.3 15.7
600 9.5 18.1 3,900 9.2 17.7 7,200 9.1 17.1
700 10.0 15.7 4,000 12.2 19.6 7,300 8.9 19.6
800 9.0 19.6 4,100 10.5 20.0 7,400 9.3 18.0
900 10.0 13.2 4,200 10.4 19.5 7,500 7.8 18.1

1,000 9.7 15.7 4,300 9.1 18.4 7,600 7.9 18.1
1,100 10.4 13.4 4,400 10.2 16.1 7,700 9.1 22.0
1,200 12.0 15.9 4,500 12.3 17.5 7,800 10.9 21.1
1,300 12.3 27.2 4,600 9.9 14.4 7,900 8.7 17.6
1,400 13.4 35.2 4,700 11.2 20.0 8,000 9.0 17.7
1,500 13.8 35.5 4,800 9.6 20.9 8,100 11.4 17.4
1,600 13.9 38.6 4,900 8.6 21.7 8,200 9.1 16.9
1,700 15.4 42.8 5,000 8.8 22.6 8,300 10.4 14.8
1,800 14.0 38.2 5,100 9.1 25.2 8,400 9.1 16.2
1,900 13.6 37.0 5,200 9.7 23.1 8,500 9.1 14.8
2,000 12.4 34.4 5,300 10.5 27.0 8,600 9.5 17.5
2,100 10.7 27.2 5,400 9.2 24.1 8,700 9.6 13.8
2,200 9.3 21.9 5,500 10.1 20.9 8,800 9.9 14.9
2,300 8.1 18.6 5,600 10.9 17.2 8,900 9.3 14.9
2,400 10.5 24.0 5,700 9.8 15.8 9,000 9.2 14.1
2,500 11.2 27.7 5,800 9.2 16.6 9,100 10.2 14.7
2,600 9.4 30.0 5,900 9.6 15.2 9,200 11.0 13.9
2,700 12.3 31.7 6,000 9.2 15.4 9,300 10.0 15.2
2,800 12.4 29.3 6,100 8.3 16.9 9,400 10.2 13.9
2,900 12.9 29.6 6,200 9.2 17.3 9,500 8.1 14.3
3,000 13.3 26.8 6,300 8.9 16.0 9,600 10.8 20.3
3,100 11.6 23.3 6,400 9.9 14.4 9,700 9.7 15.5
3,200 13.0 23.4 6,500 10.8 16.6 9,800 10.1 16.4
3,300 12.3 16.7 6,600 11.1 17.3 9,900 9.5 16.0
3,400 11.4 15.2 6,700 8.8 15.3 10,000 10.2 18.2
3,500 12.4 11.7 6,800 8.8 17.3
3,600 12.7 16.9 6,900 10.0 14.7
3,700 9.9 18.7 7,000 8.7 15.6

Note: Each statistic is the Pearson chi-squared statistic, with nine degrees of freedom, averaged
over 25 Monte Carlo replications. Simulations use the mechA function with size equal to the
values shown in the Size column, nprecincts = 1000, lgp = 2.5, hgp = 1, mf = 1/2, lb = 500,
ha = 500.
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Table 7: 2BL Tests for Vote Counts Simulated Using the First Mechanism

Size Benf. equal Size Benf. equal Size Benf. equal

500 9.9 44.3 3,800 65.2 379.9 7,100 105.9 673.0
600 22.0 80.4 3,900 53.5 345.3 7,200 106.8 668.5
700 14.5 64.7 4,000 52.8 323.8 7,300 131.0 752.0
800 27.8 113.1 4,100 79.7 430.9 7,400 119.3 699.6
900 18.6 89.8 4,200 63.6 368.2 7,500 100.2 627.2

1,000 19.1 96.3 4,300 68.4 434.8 7,600 120.5 721.1
1,100 25.8 114.8 4,400 58.9 394.3 7,700 105.8 662.5
1,200 23.8 115.2 4,500 59.6 391.9 7,800 110.7 673.1
1,300 26.5 139.5 4,600 64.5 435.7 7,900 120.4 740.9
1,400 24.4 130.8 4,700 72.1 435.0 8,000 117.3 725.1
1,500 27.3 140.2 4,800 73.4 469.0 8,100 130.4 785.3
1,600 28.1 145.5 4,900 78.3 484.4 8,200 111.7 723.8
1,700 30.7 162.5 5,000 77.0 467.7 8,300 133.7 822.0
1,800 33.7 178.5 5,100 82.3 507.2 8,400 103.9 734.5
1,900 29.0 185.2 5,200 73.3 482.5 8,500 120.7 752.4
2,000 29.1 179.9 5,300 72.5 483.5 8,600 148.0 862.6
2,100 39.4 214.9 5,400 78.9 499.5 8,700 141.6 794.8
2,200 36.6 212.4 5,500 89.1 506.1 8,800 120.9 825.7
2,300 29.9 212.1 5,600 74.1 526.2 8,900 111.1 768.2
2,400 35.2 211.4 5,700 80.9 531.7 9,000 124.3 771.4
2,500 39.0 231.6 5,800 97.6 589.0 9,100 134.0 821.4
2,600 40.8 250.5 5,900 107.5 589.0 9,200 113.2 798.4
2,700 44.5 261.5 6,000 102.5 574.1 9,300 124.9 810.2
2,800 49.5 272.9 6,100 82.5 533.2 9,400 124.5 840.2
2,900 48.1 289.6 6,200 95.6 577.3 9,500 121.3 814.7
3,000 46.1 271.6 6,300 83.3 557.9 9,600 174.0 994.5
3,100 41.1 275.2 6,400 106.6 588.3 9,700 123.8 851.1
3,200 45.8 290.8 6,500 89.5 542.8 9,800 145.1 933.2
3,300 48.3 302.2 6,600 81.4 548.8 9,900 151.9 923.8
3,400 44.3 295.4 6,700 91.8 612.3 10,000 136.3 895.2
3,500 62.1 330.4 6,800 102.3 653.2
3,600 64.4 357.3 6,900 100.7 646.7
3,700 54.6 325.5 7,000 95.8 631.3

Note: Each statistic is the Pearson chi-squared statistic, with nine degrees of freedom, averaged
over 25 Monte Carlo replications. Simulations use the mechAm function with size equal to the
values shown in the Size column, nprecincts = 1000, lgp = 2.5, hgp = 1, mf = 1/2, lb = 500,
ha = 500.

32



Table 8: Index of Vote Manipulation Simulations

Add Votes Subtract Votes
Range of Application Proportional Repeaters Proportional Repeaters
All Table 9 Table 11 Table 13 Table 15
Above Expected Value Table 10 Table 12 Table 14 Table 16
Below Expected Value Table 10 Table 12 Table 14 Table 16
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Table 9: Simulated Proportional Vote Switching: Gains

Receiver (cand. 1) Donor (cand. 2)
fraction 500 1000 2000 500 1000 2000

0 11.2 11.0 12.5 9.7 10.9 14.6
0.01 10.6 9.9 10.6 9.5 11.5 14.1
0.02 8.4 12.5 12.3 9.8 11.0 10.9
0.03 10.7 10.5 12.0 10.3 11.4 12.6
0.04 10.8 10.4 13.5 10.7 11.2 12.0
0.05 10.7 10.3 13.3 9.3 12.0 11.9
0.06 10.0 10.9 12.9 8.6 10.9 13.9
0.07 9.2 11.1 13.1 12.1 11.5 16.0
0.08 10.8 12.1 12.9 10.9 13.3 18.7
0.09 10.1 10.9 14.3 11.0 14.0 20.1
0.1 10.4 11.4 14.7 11.9 16.4 21.6

0.11 9.1 11.3 14.0 11.9 17.0 24.7
0.12 10.2 11.9 13.8 13.3 17.7 27.5
0.13 10.3 11.3 13.7 14.7 19.9 29.9
0.14 11.4 12.4 16.8 15.2 23.1 35.0
0.15 10.7 12.5 14.3 18.2 23.4 41.5

Note: Each statistic is the Pearson chi-squared statistic X 2
B2

, with nine degrees of freedom,
averaged over 50 Monte Carlo replications.
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Table 10: Simulated Proportional Vote Switching with Thresholds: Gains

receive votes when above expectation
Receiver (cand. 1) Donor (cand. 2)

fraction 500 1000 2000 500 1000 2000

0 10.4 9.6 11.3 9.3 10.9 12.4
0.01 10.0 11.6 13.0 9.1 10.1 10.3
0.02 11.2 12.2 14.8 9.0 10.5 11.0
0.03 11.3 14.4 18.6 8.8 10.1 13.1
0.04 12.7 16.3 24.4 9.6 10.7 11.6
0.05 13.6 19.3 30.8 8.6 12.4 12.1
0.06 17.5 23.4 39.5 9.7 10.5 14.7
0.07 17.9 27.6 49.4 9.9 12.5 17.2
0.08 20.8 33.9 60.3 10.9 12.4 17.8
0.09 26.4 40.7 69.2 10.8 13.1 18.2
0.1 26.0 40.4 73.9 10.8 14.3 18.0

0.11 27.1 44.6 79.9 10.8 13.7 18.7
0.12 29.2 44.9 86.6 12.8 14.9 19.0
0.13 30.1 52.5 92.3 12.0 14.6 19.8
0.14 31.8 57.5 99.5 12.2 18.3 22.9
0.15 37.0 64.7 110.2 12.8 17.9 24.7

receive votes when below expectation
Receiver (cand. 1) Donor (cand. 2)

fraction 500 1000 2000 500 1000 2000

0 9.6 11.2 9.6 9.8 9.9 12.4
0.01 9.9 11.2 13.2 10.2 10.8 13.9
0.02 9.9 11.1 16.3 11.2 11.1 15.8
0.03 10.4 15.6 21.4 11.2 12.5 17.3
0.04 13.1 17.8 25.7 11.0 14.0 17.8
0.05 15.6 20.7 32.7 11.8 14.1 18.8
0.06 16.0 27.4 39.9 12.2 15.7 22.3
0.07 18.9 32.0 51.6 12.6 17.5 24.9
0.08 20.9 39.5 67.1 12.6 20.3 28.6
0.09 25.7 42.7 74.9 14.8 19.8 33.5
0.1 26.7 45.9 77.2 16.1 23.1 39.6

0.11 27.4 45.1 86.3 18.9 26.0 42.8
0.12 29.9 47.6 89.4 18.3 29.7 51.3
0.13 32.5 52.6 94.5 21.4 35.5 62.8
0.14 32.8 54.2 110.0 24.7 39.2 72.8
0.15 36.0 60.0 114.2 27.8 43.1 79.7

Note: Each statistic is the Pearson chi-squared statistic X 2
B2

, with nine degrees of freedom,
averaged over 50 Monte Carlo replications.
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Table 11: Simulated “Repeater” Vote Switching: Gains

Receiver (cand. 1) Donor (cand. 2)
fraction 500 1000 2000 500 1000 2000

0 10.6 10.6 11.0 10.5 11.3 11.3
0.01 9.5 10.3 13.0 10.0 11.1 12.4
0.02 11.5 9.2 12.8 10.5 10.3 13.2
0.03 9.9 11.5 14.3 10.6 11.4 11.9
0.04 10.4 10.7 14.6 9.2 11.6 14.1
0.05 11.3 10.2 13.5 10.8 9.8 14.1
0.06 11.0 12.6 15.0 9.5 10.8 16.0
0.07 10.3 12.0 15.1 9.4 11.4 14.5
0.08 10.5 12.7 17.6 10.6 11.8 17.7
0.09 9.6 13.2 17.6 11.3 13.4 20.5
0.1 11.0 13.3 17.9 11.4 13.3 17.1

0.11 11.1 13.1 19.2 11.6 15.7 22.5
0.12 10.8 15.7 17.8 13.1 17.5 22.0
0.13 10.5 13.5 19.9 13.8 17.1 26.9
0.14 11.1 14.0 19.1 14.4 16.8 29.0
0.15 12.6 14.7 19.7 15.5 19.2 32.1

Note: Each statistic is the Pearson chi-squared statistic X 2
B2

, with nine degrees of freedom,
averaged over 50 Monte Carlo replications.
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Table 12: Simulated “Repeater” Vote Switching with Thresholds: Gains

receive votes when above expectation
Receiver (cand. 1) Donor (cand. 2)

fraction 500 1000 2000 500 1000 2000

0 9.6 8.7 12.4 11.1 11.9 13.0
0.01 11.2 13.3 15.0 9.3 10.3 11.4
0.02 12.7 17.7 27.1 8.8 12.2 13.2
0.03 15.5 27.2 44.1 10.5 10.7 14.2
0.04 25.6 41.8 68.9 10.9 13.1 16.9
0.05 24.8 38.1 67.2 11.2 13.6 17.1
0.06 23.6 42.2 74.2 12.0 15.1 19.3
0.07 28.2 48.4 89.9 12.9 15.6 22.1
0.08 33.5 58.1 112.8 13.5 17.3 26.5
0.09 32.7 56.5 107.7 12.9 18.0 29.3
0.1 36.0 59.8 110.0 12.7 18.1 25.6

0.11 37.7 64.6 119.2 13.2 17.5 26.1
0.12 39.4 75.6 135.1 14.2 17.0 27.4
0.13 38.0 71.9 128.5 12.9 18.0 30.0
0.14 40.0 72.3 128.4 13.2 17.4 24.8
0.15 40.9 75.9 130.1 12.4 14.7 24.1

receive votes when below expectation
Receiver (cand. 1) Donor (cand. 2)

fraction 500 1000 2000 500 1000 2000

0 9.6 10.3 12.8 9.7 10.3 12.2
0.01 10.0 13.1 15.0 10.4 11.4 14.3
0.02 12.6 18.3 28.0 11.8 12.7 19.9
0.03 18.6 26.8 50.3 13.5 18.3 22.8
0.04 25.9 44.5 80.0 12.4 19.4 26.7
0.05 26.5 45.4 74.8 16.1 21.5 31.4
0.06 28.5 46.6 87.1 14.8 21.5 37.9
0.07 33.1 57.1 102.2 17.0 24.9 42.1
0.08 39.0 71.8 128.4 16.8 26.3 45.4
0.09 38.0 68.1 126.9 19.6 27.0 40.9
0.1 36.0 76.3 132.7 17.2 26.5 46.3

0.11 45.8 73.8 143.5 19.3 29.2 45.2
0.12 54.3 93.5 180.1 19.0 31.9 55.9
0.13 45.2 88.1 172.4 19.0 31.1 53.1
0.14 44.6 87.5 172.1 20.4 32.6 52.5
0.15 52.6 95.2 181.4 21.7 35.6 62.1

Note: Each statistic is the Pearson chi-squared statistic X 2
B2

, with nine degrees of freedom,
averaged over 50 Monte Carlo replications.
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Table 13: Simulated Proportional Vote Switching: Losses

Donor (cand. 1) Receiver (cand. 2)
fraction 500 1000 2000 500 1000 2000

0 10.0 9.6 11.6 9.6 10.1 13.5
0.01 10.2 10.6 12.0 10.2 10.1 12.6
0.02 10.3 11.5 12.8 11.2 10.9 11.9
0.03 9.1 10.7 12.6 9.5 11.4 12.2
0.04 9.6 10.6 12.2 10.1 11.0 11.6
0.05 10.6 9.7 12.5 9.4 10.3 12.0
0.06 9.9 9.5 12.4 10.3 10.7 11.9
0.07 9.9 10.8 12.9 10.2 10.9 12.6
0.08 9.0 10.3 11.2 10.5 11.5 14.4
0.09 9.6 9.4 12.2 9.8 11.3 15.3
0.1 10.5 10.1 12.2 11.5 11.0 15.5

0.11 9.1 10.1 11.4 9.6 13.5 13.7
0.12 9.2 9.8 11.4 10.1 11.2 14.8
0.13 9.1 9.4 12.9 9.3 12.8 15.9
0.14 9.2 10.1 12.3 10.2 10.9 16.3
0.15 9.1 10.3 11.1 10.0 11.5 15.6

Note: Each statistic is the Pearson chi-squared statistic X 2
B2

, with nine degrees of freedom,
averaged over 50 Monte Carlo replications.
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Table 14: Simulated Proportional Vote Switching with Thresholds: Losses

lose votes when above expectation
Donor (cand. 1) Receiver (cand. 2)

fraction 500 1000 2000 500 1000 2000

0 10.4 10.0 11.8 9.4 10.5 11.1
0.01 9.6 10.9 14.8 10.4 9.7 10.6
0.02 11.8 14.2 18.0 10.0 10.6 13.3
0.03 14.9 16.0 19.6 9.1 13.2 13.1
0.04 13.0 19.6 25.8 11.5 11.1 14.9
0.05 15.0 21.8 33.4 11.1 13.4 18.0
0.06 17.2 26.3 41.9 12.2 14.0 19.2
0.07 19.1 32.0 54.3 13.4 14.4 21.7
0.08 23.1 34.1 58.0 12.4 15.5 24.5
0.09 22.2 38.9 71.4 13.7 16.1 27.2
0.1 25.3 43.6 77.8 12.6 19.8 25.4

0.11 25.9 44.3 81.9 13.8 17.5 30.6
0.12 27.4 44.1 80.1 15.3 18.3 30.7
0.13 26.5 47.6 91.5 14.5 18.2 30.4
0.14 33.1 50.8 92.1 14.5 21.1 32.2
0.15 32.9 51.7 95.4 15.3 21.7 30.9

lose votes when below expectation
Donor (cand. 1) Receiver (cand. 2)

fraction 500 1000 2000 500 1000 2000

0 10.4 11.2 11.6 9.8 10.9 10.5
0.01 9.3 10.4 11.3 9.8 10.0 11.4
0.02 11.8 9.4 11.9 9.7 9.6 10.8
0.03 10.7 11.6 15.1 9.4 10.3 12.4
0.04 11.0 13.7 17.6 9.6 9.8 12.9
0.05 12.4 15.3 22.8 9.6 9.9 11.5
0.06 13.3 18.6 28.4 8.9 9.8 12.8
0.07 16.8 22.7 39.4 10.8 11.3 13.7
0.08 18.2 27.9 45.5 10.9 12.8 15.1
0.09 19.4 32.9 51.2 10.8 12.5 14.0
0.1 20.2 31.9 52.7 10.9 12.3 16.9

0.11 18.6 30.6 55.8 10.4 12.5 18.2
0.12 19.4 30.5 53.9 10.6 12.3 16.4
0.13 21.5 32.8 61.1 11.8 11.7 17.0
0.14 21.2 37.3 59.7 10.5 13.6 16.8
0.15 22.8 36.9 65.3 11.1 13.5 19.4

Note: Each statistic is the Pearson chi-squared statistic X 2
B2

, with nine degrees of freedom,
averaged over 50 Monte Carlo replications.
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Table 15: Simulated “Repeater” Vote Switching: Losses

Donor (cand. 1) Receiver (cand. 2)
fraction 500 1000 2000 500 1000 2000

0 10.0 9.6 11.6 9.6 10.1 13.5
0.01 10.1 10.4 13.1 10.0 10.5 14.2
0.02 10.4 10.8 12.2 9.4 10.1 12.5
0.03 10.8 12.5 12.8 9.8 12.4 12.4
0.04 10.2 10.2 11.9 10.1 11.6 12.2
0.05 9.4 10.6 12.8 9.6 11.2 13.4
0.06 10.6 11.5 15.2 10.5 11.6 14.4
0.07 11.0 11.4 15.2 10.7 11.4 14.6
0.08 10.5 14.0 17.8 11.3 12.3 16.0
0.09 10.3 11.3 18.4 10.2 12.2 17.0
0.1 12.2 13.8 17.5 11.3 12.5 17.8

0.11 13.8 15.1 20.7 11.3 15.5 18.9
0.12 12.1 17.2 25.3 10.6 14.4 21.5
0.13 12.7 17.5 26.9 12.3 14.5 21.9
0.14 15.3 19.1 29.4 11.3 14.3 19.0
0.15 14.6 18.6 32.1 12.4 14.5 21.4

Note: Each statistic is the Pearson chi-squared statistic X 2
B2

, with nine degrees of freedom,
averaged over 50 Monte Carlo replications.

40



Table 16: Simulated “Repeater” Vote Switching with Thresholds: Losses

lose votes when above expectation
Donor (cand. 1) Receiver (cand. 2)

fraction 500 1000 2000 500 1000 2000

0 10.4 10.0 11.8 9.4 10.5 11.1
0.01 10.8 12.9 19.6 10.0 11.2 12.6
0.02 15.6 21.5 32.2 11.0 13.0 16.4
0.03 22.1 29.5 47.1 11.6 16.9 21.1
0.04 24.6 42.5 71.9 15.2 20.8 29.1
0.05 26.0 41.7 75.1 14.6 20.5 34.3
0.06 26.4 49.7 87.4 17.7 23.0 36.1
0.07 33.7 55.6 108.4 17.9 26.7 45.9
0.08 37.3 64.4 127.2 18.1 30.1 48.8
0.09 35.9 58.7 120.6 21.5 32.6 57.4
0.1 35.9 61.4 115.7 20.7 37.6 60.8

0.11 34.7 63.7 117.3 24.8 41.6 70.9
0.12 41.8 71.6 143.0 27.4 41.0 75.0
0.13 39.5 65.7 131.3 25.6 41.7 78.7
0.14 41.9 70.9 134.8 25.9 45.0 85.6
0.15 42.6 67.3 130.3 31.5 49.2 86.1

lose votes when below expectation
Donor (cand. 1) Receiver (cand. 2)

fraction 500 1000 2000 500 1000 2000

0 10.4 11.2 11.6 9.8 10.9 10.5
0.01 9.8 10.7 14.3 10.1 9.6 11.1
0.02 11.7 14.5 21.1 11.0 9.5 10.9
0.03 16.4 23.5 33.9 10.7 10.5 13.9
0.04 21.4 37.1 60.7 10.9 13.2 18.5
0.05 20.0 33.1 58.2 11.2 13.7 18.3
0.06 22.6 35.7 63.7 11.3 13.0 20.1
0.07 26.1 39.7 73.5 13.8 15.6 23.0
0.08 29.8 50.3 96.3 13.4 19.2 27.6
0.09 26.1 50.4 85.3 14.4 19.8 24.7
0.1 28.1 45.5 85.3 13.0 20.0 30.6

0.11 26.9 39.7 74.8 13.5 20.5 33.6
0.12 30.2 49.4 94.6 13.9 21.8 37.6
0.13 29.6 48.9 91.4 14.8 22.6 38.6
0.14 27.4 46.0 87.4 14.6 23.2 34.6
0.15 24.0 43.4 75.9 16.0 24.3 38.2

Note: Each statistic is the Pearson chi-squared statistic X 2
B2

, with nine degrees of freedom,
averaged over 50 Monte Carlo replications.
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Table 17: Precinct, Machine and Ballot Statistics

Election Day Broward Miami-Dade Pasco
Precincts 775 757 152
Machines 5,306 5,323 1,338
Precinct-machines 10,614 14,128 2,676
Ballots 431,488 435,902 127,526

Early Voting Broward Miami-Dade Pasco
Sites 20 14 3
Styles 150 100 16
Site-days 110 — 4
Style-site-days — 4,429 —
Machines 190 726 36
Site-day-machines 380 — 72
S-s-d-machines — 24,374 —
Ballots 176,743 242,344 29,584
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Table 18: Miami-Dade Early Voting Second-digit Benford’s Law Tests

site- site-style-
style-days machines day-machines

(n = 5, 186) (n = 727) (n = 33, 126)
item Benf. equal Benf. equal Benf. equal

Bush 10.1 44.9 23.5 20.9 130.3 391.4
Kerry 17.3 60.4 61.7 12.1 115.5 387.3
Martinez 14.8 48.6 32.6 17.3 107.6 357.9
Castor 9.1 42.1 43.3 18.6 93.0 336.2
Am. 1 Yes 14.1 59.9 69.6 9.8 119.7 415.4
Am. 1 No 8.7 44.1 64.8 9.8 86.3 295.7
Am. 2 Yes 17.7 65.4 58.3 2.6 83.4 334.7
Am. 2 No 20.2 71.1 41.9 16.9 92.0 292.8
Am. 3 Yes 8.2 41.4 90.8 7.6 122.7 394.8
Am. 3 No 15.3 56.7 66.1 7.8 104.8 342.1
Am. 4 Yes 7.7 40.6 47.1 11.0 87.3 338.0
Am. 4 No 14.4 60.7 83.6 5.3 108.9 351.4
Am. 5 Yes 21.9 78.3 69.2 4.6 58.4 307.5
Am. 5 No 11.0 44.8 5.7 71.6 84.4 237.8
Am. 6 Yes 12.9 56.9 55.3 11.0 105.2 368.5
Am. 6 No 9.0 37.8 44.4 9.6 126.6 374.1
Am. 7 Yes 24.6 85.0 47.8 14.9 134.2 468.3
Am. 7 No 12.0 33.9 77.4 236.4 64.5 192.7
Am. 8 Yes 13.9 61.7 68.9 2.4 96.3 377.7
Am. 8 No 6.7 28.9 63.5 15.5 79.2 261.2

Note: Each statistic is the Pearson chi-squared statistic, with nine degrees of freedom.
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Table 19: Broward Second-digit Benford’s Law Tests

Election Day Early Voting
precincts machines styles machines
(n = 775) (n = 5, 307) (n = 150) (n = 190)

item Benf. equal Benf. equal Benf. equal Benf. equal

Bush 9.6 6.6 23.4 25.6 9.1 12.2 8.4 9.5
Kerry 21.2 12.4 79.7 6.5 21.4 24.8 10.5 17.6
Martinez 10.7 8.3 28.2 20.1 6.6 9.8 5.2 8.6
Castor 13.6 5.9 69.7 11.4 9.2 6.7 11.4 17.5
Am. 1 Yes 24.1 16.3 31.2 8.5 10.1 12.2 14.9 10.0
Am. 1 No 17.1 18.1 60.3 8.4 7.0 3.7 7.0 7.2
Am. 2 Yes 12.2 7.3 47.5 21.7 13.6 11.7 19.4 16.8
Am. 2 No 11.6 22.4 47.6 18.8 8.7 9.8 4.8 3.9
Am. 3 Yes 7.4 6.4 65.8 9.1 8.1 11.8 11.0 14.9
Am. 3 No 24.9 6.7 40.5 11.7 11.9 17.7 5.4 4.6
Am. 4 Yes 9.8 7.7 61.3 5.8 14.4 15.5 14.2 22.7
Am. 4 No 8.6 16.2 55.8 10.1 4.7 10.1 10.5 8.2
Am. 5 Yes 7.9 8.8 76.9 17.5 13.8 13.0 15.6 20.9
Am. 5 No 7.4 20.6 24.8 113.4 5.2 4.1 9.7 8.4
Am. 6 Yes 19.4 9.9 84.9 10.3 4.4 4.4 11.9 16.8
Am. 6 No 6.2 10.9 43.7 5.6 7.8 10.1 16.6 16.4
Am. 7 Yes 13.1 16.7 72.1 6.6 5.0 8.6 44.0 64.2
Am. 7 No 14.3 44.3 157.7 346.9 8.9 9.6 5.7 8.7
Am. 8 Yes 7.1 3.8 74.6 6.3 4.3 6.2 27.9 42.9
Am. 8 No 13.9 26.1 15.9 21.7 6.7 7.3 4.0 7.7

Note: Each statistic is the Pearson chi-squared statistic, with nine degrees of freedom. In
Broward, on election day each machine recorded votes for only one precinct. In the early voting
data the number of votes on each style-machine combination was too small (mean = 16.7, median
= 2) to support analysis for those combinations.
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Table 20: Pasco Second-digit Benford’s Law Tests

Early Voting
Election Day machine-

precincts machines precincts
(n = 152) (n = 1, 338) (n = 372)

item Benf. equal Benf. equal Benf. equal

Bush 6.9 5.6 16.4 16.2 14.6 23.8
Kerry 4.0 3.5 22.9 21.7 19.0 25.2
Martinez 6.5 3.7 30.6 6.4 13.4 24.3
Castor 11.2 10.5 40.5 7.7 14.7 20.7
Am. 1 Yes 9.0 10.4 24.1 11.3 5.4 10.5
Am. 1 No 7.0 5.1 9.8 5.0 18.6 28.3
Am. 2 Yes 5.4 4.8 28.6 10.3 9.6 16.2
Am. 2 No 8.6 12.7 15.8 1.9 10.4 17.7
Am. 3 Yes 10.4 9.3 34.6 11.0 12.5 18.6
Am. 3 No 8.5 4.4 10.1 16.2 13.1 19.2
Am. 4 Yes 6.0 8.4 20.7 2.8 8.6 14.7
Am. 4 No 8.6 5.2 19.8 9.3 21.5 33.4
Am. 5 Yes 3.6 9.4 16.6 8.2 11.9 20.9
Am. 5 No 3.8 6.4 10.2 19.1 10.3 17.2
Am. 6 Yes 12.8 15.5 33.5 7.7 10.5 18.7
Am. 6 No 4.4 4.7 20.1 10.0 14.4 16.4
Am. 7 Yes 29.5 43.3 20.5 18.3 14.1 22.3
Am. 7 No 5.1 7.2 19.9 10.7 5.2 6.9
Am. 8 Yes 8.0 13.8 16.5 7.7 6.3 8.6
Am. 8 No 8.0 14.6 29.9 6.6 11.1 18.1

Note: Each statistic is the Pearson chi-squared statistic, with nine degrees of freedom. In Pasco,
on election day each machine recorded votes for only one precinct. In Pasco there were only 16
early voting “precincts,” too few to support analysis for those units.
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Table 21: Mexico 2006 Presidential Vote Second-digit Benford’s Law Tests: Secciones

Seccion-level 2BL test statistics

State n PAN PRD PRI NA ASDC

All 64,679 48.1 25.3 109.0 1254.8 16.6
Aguascalientes 593 6.6 14.2 6.0 18.9 8.3
Baja California 1,525 12.0 34.9 13.4 49.5 20.4
Baja California Sur 351 6.3 17.7 15.6 13.7 4.0
Campeche 491 8.3 19.2 7.7 11.8 8.6
Coahuila 1,938 8.3 22.5 4.7 23.2 15.8
Colima 2,918 9.9 11.7 25.1 131.6 43.6
Chiapas 1,537 16.1 15.3 5.6 44.6 12.8
Chihuahua 338 15.7 10.6 10.1 11.4 6.9
Distrito Federal 5,560 10.9 26.9 42.6 178.9 61.6
Durango 1,382 5.1 11.1 9.8 51.1 16.3
Guanajuato 3,043 13.7 7.2 25.4 117.9 6.6
Guerrero 2,767 14.4 8.8 28.0 65.8 11.9
Hidalgo 1,712 5.8 5.4 19.3 50.8 4.9
Jalisco 3,363 18.1 24.0 16.3 81.6 12.3
Mexico 6,193 51.4 49.8 15.0 238.4 18.0
Michoacan 2,687 14.0 5.5 16.8 49.7 25.0
Morelos 912 14.1 17.3 8.8 17.4 11.5
Nayarit 879 5.6 7.2 8.8 23.7 10.6
Nuevo Leon 2,148 8.6 11.8 9.3 7.9 7.3
Oaxaca 2,456 16.3 9.4 14.4 38.9 19.8
Puebla 2,566 18.5 20.9 16.7 104.3 10.7
Queretaro 761 16.8 12.6 6.3 25.5 10.1
Quintana Roo 445 11.6 6.7 5.9 8.8 7.5
San Luis Potosi 1,797 9.7 9.6 24.9 43.2 8.1
Sinaloa 3,771 39.1 25.9 17.1 36.4 87.9
Sonora 1,361 23.1 3.9 20.3 45.5 8.5
Tabasco 1,139 7.3 16.3 13.6 6.4 29.0
Tamaulipas 1,743 10.7 9.3 13.8 56.8 12.7
Tlaxcala 611 8.4 13.5 11.5 23.5 12.6
Veracruz 4,736 14.0 9.5 19.1 75.2 28.7
Yucatan 1,083 20.9 31.0 6.6 46.5 7.5
Zacatecas 1,873 10.2 12.9 14.5 35.3 38.5

Note: Each statistic is the Pearson chi-squared statistic, with nine degrees of freedom. The values
in the n column show the total number of secciones in each state (or, for “All,” across the whole
country), not the number of vote counts that have two digits. That number varies among the
parties.

46



Table 22: Mexico 2006 Presidential Vote Second-digit Benford’s Law Tests: Casillas

Casilla-level 2BL test statistics

State n PAN PRD PRI NA ASDC

All 130,768 660.7 104.7 217.7 1712.2 2751.1
Aguascalientes 1,229 14.8 13.6 17.3 46.4 29.1
Baja California 3,550 174.5 44.3 24.9 92.5 223.5
Baja California Sur 664 41.9 42.3 3.0 6.4 23.3
Campeche 929 50.7 50.0 46.2 6.4 54.9
Coahuila 4,784 15.2 19.5 24.8 23.4 118.1
Colima 4,742 49.7 33.7 57.1 150.4 374.6
Chiapas 3,094 68.9 25.9 30.7 16.5 167.4
Chihuahua 762 9.5 37.6 85.2 14.7 53.3
Distrito Federal 12,235 105.9 71.4 142.7 17.3 134.8
Durango 2,236 8.5 27.1 17.5 58.1 141.4
Guanajuato 6,136 10.3 19.5 9.2 86.0 267.3
Guerrero 4,478 17.7 49.4 14.6 38.9 155.8
Hidalgo 3,055 41.8 62.0 31.1 164.4 70.9
Jalisco 8,110 98.8 41.5 272.5 276.9 160.6
Mexico 15,553 144.1 70.2 37.7 460.8 113.5
Michoacan 5,427 23.0 239.6 20.9 13.1 249.1
Morelos 2,067 36.7 40.0 26.1 56.2 89.7
Nayarit 1,395 7.1 38.8 64.2 41.4 47.7
Nuevo Leon 5,066 28.8 32.1 182.7 177.2 286.1
Oaxaca 4,479 21.3 6.7 46.6 16.0 123.4
Puebla 6,037 56.5 327.1 22.3 74.5 112.2
Queretaro 1,807 25.6 71.9 17.7 37.6 66.4
Quintana Roo 1,154 27.9 31.1 12.8 11.5 64.4
San Luis Potosi 3,094 10.2 15.0 8.7 50.5 42.1
Sinaloa 4,300 84.1 35.7 11.9 10.9 136.7
Sonora 3,011 50.2 27.8 8.5 21.4 222.9
Tabasco 2,408 80.4 25.9 69.9 8.9 30.2
Tamaulipas 3,971 106.6 62.2 57.5 68.6 323.6
Tlaxcala 1,255 71.6 31.4 26.8 18.2 79.5
Veracruz 9,185 169.9 100.4 27.2 31.1 302.5
Yucatan 2,157 24.4 11.4 71.7 20.8 45.6
Zacatecas 2,398 29.0 43.8 13.6 55.8 62.3

Note: Each statistic is the Pearson chi-squared statistic, with nine degrees of freedom. The values
in the n column show the total number of casillas in each state (or, for “All,” across the whole
country), not the number of vote counts that have two digits. That number varies among the
parties.
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Figure 1: Times (Resolved to the Second and Shown on a 24-Hour Clock) When Votes Were Cast
on Machines in Selected Precincts on Election Day, Miami-Dade County
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