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Abstract

We present a review of optical properties of excitonic semiconductors. We consider
the interaction of light with surfaces, thin films, multilayered systems, small particles
and rough surfaces accounting for excitonic transitions. The first part of the paper is
devoted to studies done using classical electrodynamics within the nonlocal dielec-
tric response theory. For the dielectric function we take the Hopfield and Thomas
coupled harmonic oscillator model, which yields excitonic modes beyond the usual
optical waves. Therefore, studies of the coupling of light to exciton-polaritons in the
presence of surfaces require additional boundary conditions (ABC’s) to determine
the reflected and transmitted electromagnetic field amplitudes within models of
abruptly terminated semiconductors. An alternative consisting in solving Maxwell’s
equations for the electromagnetic field together with an equation for the excitonic
polarization derived from the quantum mechanical dynamics of electrons and holes,
including a surface potential that accounts for the interaction of excitons with the
surface is explored in the latter part of the paper. The surface potential may be
modeled by an infinite barrier, or by smooth repulsive exponential potentials and
Morse-type potential wells. Surface potential wells may produce entrapped exci-
tonic states, which are explored at surfaces, films and superlattices. Scattering of
light from non-ideal rough surfaces is also discussed. Comparison between theory
and experiment is emphasized all along the paper. The final section is devoted
to a microscopic theory which is ABC independent and explains the experimental
measurements of transmission in thin films.
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1 Introduction

Although the study of the optical properties of excitons can be traced back
to the 1950’s, they form currently an active area of research. The concept of
excitons was first introduced by Frenkel [1], Peierls [2] and Wannier [3]. A
few years later, Pekar [4] showed that when light waves with frequencies close
to those of resonant absorption of light reaches some crystals, unusual refrac-
tion takes place. Due to the interaction of light with a crystal, he observed
several waves of the same frequency and polarization, but with different in-
dex of refraction. This phenomenon differs from double refraction of light and
occurs even in isotropically (cubic) polarizing crystals. In addition, strictly
longitudinal electric waves were also excited in the crystal.

Pekar introduced [4] the concept of additional boundary conditions (ABC’s)
in order to arrive at a complete set of equations capable of determining the
amplitude of the additional waves transmitted within excitonic media. Hop-
field and Thomas [5] developed a formalism to calculate the optical response
of semiconductor surfaces, taking Pekar ABC’s and allowing for an exciton-
free surface layer, known as the dead layer. Pekar ABC’s establish that the
excitonic polarization vanishes at the semiconductor surface. To deal with
excitonic media the classical local dielectric theory was reformulated by intro-
ducing a non-local dielectric response. The model proposed by Hopfield and
Thomas [5] consists of coupled harmonic oscillators, which yield a dielectric re-
sponse dependent on the angular frequency of light and the wave vector of the
excitonic modes. A system whose dielectric function depends on wavevector
besides being frequency dependent is called spatially dispersive or nonlocal.

After Pekar’s ABC’s, several models have emerged, several of which were sum-
marized by Halevi and Fuchs [6,7] in the so-called generlized ABC’s. As par-
ticular cases we mention the ABC’s of Pekar [4,8], Fuchs-Kliewer [9], Rimbey-
Mahan [10], and Agarwal-Pattanayak-Wolf [11]. A long enduring debate has
been establish on the question of the correct ABC’s, with Pekar’s condition be-
ing the one that seems to yield better results when compared with experiment.
On the other hand, inhomogeneous additional boundary conditions have been
suggested by Sel’kin et al. [12], which account for the polarization current at
the interface between the excitonic active medium and the surface transition
layer or dead layer.

There are many studies of light propagation in semiinfinite systems [4–6,8,13–
33] and in multilayered media such as thin films, microcavities and periodic
superlattices [34–56], as well as in dielectric spheres and cylinders. Most calcu-
lations have employed ABC’s, as the boundary conditions of electromagnetic
origin are insufficient to solve the problem of reflection and refraction of light.
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An alternative to introduction of ABC’s in the study of excitons at surfaces
is the solution of the equations of motion of the exciton in the presence of
an interaction potential [30] . This potential has contributions from the image
charges of the electron and hole, produced at the surface of the semiconductor,
which lead to a repulsive interaction [7], although impurities and defects at
the surface can produce atractive potentials that may even trap excitons at
the surface [57,46].

Coupling of light with surface excitons has received considerable attention in
the literature [13,18,58,28,33]. Experimentally surface exciton polaritons have
been excited and detected using the attenuated total reflection (ATR) arrange-
ment. In the ATR geometry, a prism of constant index of refraction is used
to increase the wave vector of the incident light, in order to allow its coupling
with surface excitons. The exponential evanescent light wave tunnels through
the air gap between the prism and the surface active excitonic medium, and
couples with the exciton polariton that propagate along the surface of the
semiconductor. Using this technique, Lagois [58] was able to observe the A1,
B1 and C1 excitonic transitions using ZnO. Because of spatial dispersion, sur-
face excitons coexist with bulk modes in the frequency region between the
transverse and longitudinal resonance frequencies.

Surface excitons have been also investigated on rough surfaces [59–64]. Results
of the study of light scattering by non flat surfaces shows the possiblility of
roughness coupling of light to surface modes. In this case, the momentum of
light is increased by that provided by the rough surface.

Tough most of the exciton polariton studies have used the reflectance of light,
other techniques are also available, such as photoluminiscence [65,66], inelastic
Raman and Brillouin scattering [67–74], and elastic Rayleigh scattering [75].

In recent years, microscopic theories have emerged for the study of polaritons
in semiconductors. Muljarov et al. [76] developed a method based on micro-
scopic boundary conditions, to explore optical properties of exciton polaritons
accounting for spatial dispersion. Their approach may be applied to arbitrary
electron-hole interaction potential and probed through one-dimensional con-
tact interactions in half-space and slab geometries. Comparisons with ABC
based calculations show how crucial the appropiate selection of boundary con-
ditions is for the correct computation of the optical spectra. Electron-hole ex-
citations and optical spectra calculations using first principles were reported
[77] recently, describing the excitations of the electronic system through the
use of one-, and two-particle Green’s function. The computational method
combines the local denstiy approximation for the electronic ground state, the
single particle spectrum of the electrons and holes as determined according to
the GW approximation [78] to the electron self-energy operator, and finally
an account of the electron-hole interaction.
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First principles studies [79] were developed to investigate optical properties
of semiconductors accounting for local-field effect and excitons. Calculations
employ Hedin’s [78] GW approximation (GWA), based on the all-electron
full potential augmented plane wave method. The formalism has been ap-
plied to obtain the optical properties of small-, medium-, and large-band gap
semiconductors. Comparisons with experiment have been carried out for Si
and diamond. When local field effects are neglected the theoretical curves
deviate from exeperiment, while good agreement has been found when local
field effects are included. Moreover, frequently the local density approximation
(LDA) fails to yield good results as compared with experiment. Marini et al.
[80] has developed studies of bound excitons using time-dependent density-
functional theory (TDDFT). Formulae of the optical and energy-loss spectra
were derived using a frequency dependent and non local exchange correlation
function within the TDDFT. Theoretical results, including local field effects,
have been compared with experiment for LiF, SiO2 and diamond finding good
agreement.
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2 Excitons

Consider a transition of an electron from the valence band to the conduction
band of a semiconductor, probably induced by the absorption of a photon.
The excited electron leaves behind a hole in the valence band, which behaves
as a positive charge carrier. The electron interacts with the hole through a
screened Coulomb potential and may therefore form bound states. The result-
ing bound electron-hole pairs are known as excitons. The presence of excitons
induces strong effects in the optical properties of semiconductors. They man-
ifest themselves as resonant peaks in the absorption, reflection and lumines-
cence spectra correspondig to transitions to or from discrete bound states, and
as shifts of the main spectral features due to the electron-hole interaction.

The first theories of excitons were formulated by Frenkel [1], Peierles [81], and
Wannier [3] in the decade of 1930’s. Since then, two different kinds of excitons
have been identified: those where the electron-hole separation is large and
those where it is small compared to the lattice parameter. Correspondingly,
the studies of optical properties of semiconductors accounting for excitonic
transitions have adopted two main approaches known as the Wannier-Mott
and Frenkel theories. In this report we will be concerned with the Wannier-
Mott excitons, that is, the electron-hole bound states with large effective Bohr
radius.

Consider the bulk of a semiconductor and assume that one can approximate
its band structure by a two-band model. In this approximation the effective
mass Schrödinger equation for the Wannier-Mott excitons has the form [82]

[
p2
e

2me

+
p2
h

2mh

− e2

εr
+ Eg

]
Ψ(~re, ~rh) = EΨ(~re, ~rh). (1)

The first two terms are the kinetic energy operators of the electron and hole
whose effective masses are me and mh in the conduction and valence bands,
respectively. The third term represents the Coulomb interaction between the
electron and hole, screened by the static dielectric function ε, −e is the electron
charge, r is the electron-hole separation distance. The fourth term is simply
the energy required to create an electron at the bottom of the conduction band
and a hole at the top of the valence band, separated from each other by an
energy gap Eg. The eigenvalue E is the total energy of an exciton described by
the wavefunction Ψ(~re, ~rh) which depends on the positions ~re, ~rh of both the
electron and hole. Since the Coulomb term only affects the relative electron-
hole coordinates, it is convenient to define the center of mass position,

~R ≡ me~re +mh~rh
M

, (2)
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Fig. 1. An exciton is an electron-hole pair (empty circles) bound to each other
through their screened Coulomb interacion, but free to move together through the
crystal. The exciton shown is a Wannier-Mott exciton, with a radius a larger than
the separation between atoms (filled circles).

and relative coordinate,

~r = ~re − ~rh, (3)

with M = me + mh the total excitonic mass. The Schrödinger equation can
then be rewritten as

[
P 2

2M
+
p2

2µ
− e2

εr

]
Ψ(~r, ~R) = (E − Eg)Ψ(~r, ~R). (4)

Here, ~P = −ih̄∇R is the total momentum, ~p = −ih̄∇r is the relative momen-
tum and µ = memh/M is the reduced mass of the electron-hole pair. As this

modified Schrödinger equation has no dependence on ~R, ~P is conserved and
Ψ(~r, ~R) may be factorized as

Ψ(~r, ~R) =
1√
V
ei~q·

~Rφ(~r), (5)

where the igenvalue h̄~q of ~P is a good quantum number that describes the
uniform motion of the center of mass of the exciton and the wavefunction φ
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Fig. 2. Exciton levels in relation to the conduction band edge, for a simple band
structure with both conduction and valence band edges at q = 0. The curvature of
the exciton levels is due to their translational kinetic energy.

describes the relative motion of the electron and hole around their center of
mass. The substitution of this wave function in the Schrödinger equation (4)
yields a hydrogen-like equation

[
p2

2µ
− e2

εr

]
φnlm(~r) = Enφnlm(~r), (6)

whose solutions are hydrogenic functions φnlm with energy levels

En = − µe4

2h̄2ε2n2
, (7)

corresponding to the principal quantum number n, the angular momentum l,
and its projection m. Therefore we obtain

E = Eg + En +K, (8)

where K = h̄2q2/(2M) is the kinetic energy associated with the center of mass
motion. The effective Bohr radius of the exciton a0 = εh̄2/µe2 is of the order of
100Å for typical semiconductors [83], justifying a posteriori the screening of
the Coulomb interaction in Eq. (1) through a macroscopic dielectric response
ε. Correspondingly, the effective Rydberg energy E1 ∼ 5meV.
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3 Bulk Optical Response

As described above, an exciton is an electron-hole pair bound to each other by
Coulomb forces and it displays an hydrogenic spectrum. As the electron and
hole are both charged elementary excitations of a semiconductor, the exciton
is able to couple strongly to light. This coupling may be described through the
dielectric function of the excitonic semiconductor and, together with Maxwell’s
equations for the electromagnetic field yields excitations which have both
an excitonic and a photonic contribution, known as exciton-polaritons. It is
known that the dielectric response ε of arbitrary quantum systems is well
described by a weighted sum of harmonic oscillator response functions, with
resonance frequencies corresponding to the transition energies, and oscilla-
tor strengths depending on the wavefunctions of the initial and final states
involved in the corresponding transitions. For frequencies ω very close to a
resonant transition frequency ω0 the dielectric function may be written as [7]

ε(ω) = ε∞ +
ω2
p

ω2
0 − ω2 − iνω , (9)

where ω2
p is a measure of the strength of the transition, ν is a phenomenological

damping constant, and ε∞ is a background dielectric constant that accounts
for the contribution to the response from the other transitions, farther away
from ω than ω0, and which therefore varies relatively slowly with frequency.

As ε(ω) depends on frequency, its Fourier transform ε(t − t′) depends on the
elapsed time between the excitation of the system by an electric field at time
t′ and the observation of the displacement field at time t, that is,

~D(t) =

∞∫

−∞
dt′ ε(t− t′) ~E(t′). (10)

Causality implies that ε(t− t′) = 0 whenever t < t′.

3.1 Spatial Dispersion

As the electric and displacement fields vary in general with position ~r, as well
as varying on time t, it is possible for the response ~D at a position ~r to depend
not only on the excitation ~E at ~r but also at nearby positions ~r′. In linear
response theory and for an isotropic medium, the electric displacement and
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the electric field are related through

~D(~r, t) =
∫
d3r′

∫
dt′ ε(~r, ~r′; t− t′) ~E(~r′, t′), (11)

where ε(~r, ~r′; t − t′) is the non local dielectric response. Notice that the local
relation (10) corresponds to Eq. (11) in the limit ε(~r, ~r′; t−t′) ∝ δ(~r−~r′), where
δ(~r−~r′) is Dirac’s delta function. In this local limit, the response at ~r depends
only on the excitation at ~r′. However, there are mechanisms which permit the
motion of excitations within a solid. For example, an exciton produced at ~r ′

at time t′ may move so that at a later time t it might arrive and contribute
to the polarization at another position ~r. Thus, we expect ε(~r, ~r ′; t− t′) to be
non null for ~r′ within a small neighborhood of ~r. The size of this neighborhood
is known as the range of non-locality. Notice that the response given by Eq.
(11) would be undistinguishable from the local response (10) unless the field
displays spatial variations on a scale comparable or smaller than the range of
non-locality.

For infinite and homogenous media, ε(~r, ~r′; t − t′) = ε(~r − ~r′; t − t′), that is,
the response would not depend separately on the excitation and observation
points, but only on their relative position ~r−~r′. Thus, Eq. (11) would become
a space and time convolution. Taking a Fourier transform with wavevector ~q
and frequency ω it becomes the simple product

~D(~q, ω) = ε(~q, ω) ~E(~q, ω). (12)

Thus, a dependence of ε on ~q implies a non-local response. As the dependence
in ω is identified with temporal dispersion, the dependence on ~q, and more
generally, the non-locality of the response is also known as spatial dispersion.

3.2 Non Locality of the Excitonic Response

As shown by Eq. (8), the total energy of an exciton includes the energy Eg

required to excite an electron from the valence to the conduction band, the
binding energy En and the kinetic energy due to the centre of mass motion
K. When a photon is absorbed and an exciton is created, the latter takes up
the momentum of the former. Thus, the energy E = h̄ω0 required to create
the exciton depends on the wavevector ~q as

E ≡ h̄ω0 = h̄ωT + h̄2q2/2M, (13)
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where

h̄ωT = Eg + En, (14)

is the energy required to create a motionless exciton with principal quantum
number n. Substituting ω0 into Eq. (9) we obtain

ε(~q, ω) = ε∞ +
ω2
p

ω2
T +Dq2 − ω2 − iνω . (15)

Here, D = h̄ωT/M and we neglected terms of order q4 as q is a small quantity
for light.

We have shown that the center of mass motion of the excitons yields a wavevec-
tor dependence of the dielectric function. Therefore, as discussed in section 3.1,
the response of an excitonic semiconductor is non-local. The above expression
of the dielectric response was introduced by Hopfield and Thomas [5] based
on a coupled harmonic oscillator model.

3.3 Exciton-polariton

Within a homogeneous medium, the solution of the field equations can always
be written as a superposition of plane waves of the form ei(~q·~r−ωt). For each
plane wave, Maxwell’s equations yield

~q × (~q × ~E)− ω2

c2
~D = 0, (16)

in the absence of external sources. If the system is isotropic, the fields may
be separated into longitudinal L and transverse T contributions, parallel and
perpendicular to the wavevector ~q respectively, and these components are un-
coupled to each other. Thus, Eq. (16) becomes

q2 ~ET − ω2

c2
~DT = 0, (17)

and

ω2

c2
~DL = 0. (18)

For a non-local system, ~D is related to ~E through Eq. (12). Thus, ~ET may be
different from zero only if ~q and ω are related through the transverse dispersion
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Fig. 3. Schematic dispersion relation ω vs q of the two transverse exciton-polaritons
q1 and q2 and the longitudinal exciton-polariton q3 of the an excitonic semiconductor
whose dielectric function is given by Eq. (15) in the absence of dissipation ν = 0.

relation, given implicitly by

q2 =
ω2

c2
ε(~q, ω). (19)

Similarly, ~EL may be different from zero but only for wavevectors and fre-
quencies such that

ε(~q, ω) = 0. (20)

We remark that even within an isotropic system, the response of a nonlo-
cal system might depend in the relative direction between the field and the
wavevector. Thus, in general, the response εT to a transverse field need not
be the same as the response εL to a longitudinal field. The dielectric func-
tion of Hopfield and Thomas (15) does not distinguish between these two
situations. Its substitution into the dispersion relation (19) yields a quadratic
equation in q2. Therefore, there are two transverse modes for each frequency,
with wavevectors ~q such that

q2 =
1

2

(
Γ2

0 + ε∞
ω2

c2

)
± 1

2



(

Γ2
0 − ε∞

ω2

c2

)2

+
4ω2ω2

p

Dc2




1/2

, (21)

where

Γ2
0 ≡ (ω2 + iνω − ω2

T )/D. (22)
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Furthermore, substituting Eq. (15) into (20) yields a single longitudinal mode
for each frequency

q2 = Γ2
0 −

ω2
p

Dε∞
. (23)

The resulting dispersion relations are illustrated schematically in Fig. (3) in
the case where there is no dissipation ν = 0.

For small wavevectors we can neglect Dq2 and therefore the dispersion re-
lation resembles that of electromagnetic waves in a local system. For small
frequencies one of the transverse modes displays a photon-like dispersion cor-
responding to the propagation of an electromagnetic wave in a medium with

index of refraction n0 =
√
ε∞ + ω2

p/ω
2
T . This branch shows dispersion as we

approach the resonance frequency ωT , where q would diverge in a local theory.
However, when ω ≈ ωT and q becomes large, the dispersion relation resembles
that of an exciton with kinetic energy h̄(ω − ωT ) = h̄2q2/(2M). Thus, after
a horizontal plateau, the dispersion relation bends upwards, yielding real val-
ues of q for arbitrary ω’s. This solution is labeled q1 in Fig. 3. The second
transverse mode, labeled q2 in Fig. 3, starts propagating at the longitudinal
frequency,

ωL =
√
ω2
T + ω2

p/ε∞ ≈ ωT +
ω2
p

2ε∞ωT
, (24)

and approaches asymptotically the linear dispersion of a photon propagating
within a medium with index of refraction

√
ε∞. For frequencies below ωL,

the second transverse mode cannot propagate as its wavevector is imaginary

q ≈ i
√

(ω2
T − ω2)/D. At ωL there is a third mode, labeled q3, which corre-

sponds to the longitudinal solution. Its frequency is shifted from the frequency
ωT of the excitonic resonance due to the long range Coulomb interaction be-
tween the charges associated to the longitudinal polarization of this exciton.
Spatial dispersion bends the dispersion relation upwards, as in the case of the
transverse exciton, and thus, yields a finite group velocity for the longitudinal
exciton. Similarly to the transverse case for large wavevectors, the dispersion
of the longitudinal exciton is due to its kinetic energy h̄ω = h̄ωL+ h̄2q2/(2M).
For frequencies below ωL the longitudinal exciton cannot propagate and its

wavevector becomes imaginary q = i
√

(ω2
L − ω2)/D.

Notice that the dispersion relations (19) and (20) yield solutions which re-
semble excitons for large wavevectors and resemble electromagnetic waves for
small wavevectors, with a transition region which interpolates between both
behaviors. Thus, these modes, consisting of excitons strongly coupled to the
electromagnetic field, are denominated exciton-polaritons.
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4 Surface Optical Response

In the previous section we showed that there are two transverse and one longi-
tudinal exciton-polaritons that may propagate at any given frequency within
an excitonic semiconductor described by the model of Hopfield and Thomas.
These modes may be excited at surfaces illuminated by an incoming light
beam. To calculate this excitation, we have to investigate the behavior of the
exciton polaritons in the neighborhood of the surface. This may be done by
adding a surface-exciton interaction potential to the equations that describe
the exciton dynamics, such as Eq. (1), as we show in Sec. 5. Here, we present
a simplified model of this interaction which was postulated by Hopfield and
Thomas [5], in which it is assumed that the sole effect of the surface is to
repel the exciton, giving rise to an exciton free region known as the dead
layer, whose width is of the order of the excitonic radius. In this region the
optical response is local and only one kind of mode can propagate, namely,
a transverse polariton. The dead layer ends abruptly at the excitonic-active
region, where there are additional transverse and longitudinal modes. To find
the amplitudes of this multiplicity of modes we need a large enough set of
boundary conditions. It turns out that Maxwell’s equations are insufficient
to determine all of the amplitudes required to solve completely the optical
problem in non-local systems with abrupt interfaces, and therefore additional
boundary conditions (ABC’s) have to be postulated, one for each additional
mode.

4.1 Additional Boundary Conditions (ABC)

During the past three decades, since the pioneering work of Pekar [4], several
sets of ABC’s have been proposed. The non-uniqueness of the ABC’s is due
to the fact that Eq. (12) is only valid within homogeneous systems and the
surface of a semi-infinite semiconductor is necessarily an inhomogeneity. Thus,
whenever the excitation point ~r′ or the observation ~r point is close to the sur-
face, ε depends separately on both ~r and ~r′ and not only on its difference,
so that ε(~q, ω) is not a well defined quantity. A detailed model of the surface
would be required to calculate the nonlocal response ε(~r, ~r′; t − t′). Instead
of proceeding along this approach, a common alternative has been to assume
that beyond the surface, the bulk modes propagate as if Eq. (12) were valid.
However, the lack of a model for the surface makes the system of equations
that define this approach under-determined. Therefore, the need for ABC’s.
The multiplicity of ABC’s proposed in the literature, their justification, their
consequences for the optical properties and the comparison between their pre-
dictions and experiment have been addressed in Refs. [84,6].
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It is shown in Refs. [84,6] that most ABC’s may be included in the generalized
ABC

αjPj(z
+
0 ) + βj

∂Pj(z
+
0 )

∂z
= 0 (25)

where Pj = (Dj − ε∞Ej)/4π is the excitonic contribution to the polarization
within the active region, j is a cartesian index, z0 denotes the location of the
surface, which we take to be parallel to the x− y plane, we situate the active
region at z > z0, so that z+

0 denotes a position just inside the acitve region,
and αj and βj are parameters which may depend on the frequency and on the

material properties. The Pekar boundary conditions [4] ~P (z+
0 ) = 0, namely,

the continuity of the excitonic polarization at the interface, corresponds to the
choice βx = βy = βz = 0. The Ting-Frankel-Birman [85] boundary conditions

∂ ~P (z+
0 )/∂z = 0, i.e., the continuity of the normal derivative of the excitonic

polarization, corresponds to the choice αx = αz = 0.

The parameters αj and βj may be interpreted within the specular reflection
model, in which it is assumed that excitons that bump into the interface z0

may be specularly reflected and that their dipole moment pj upon reflection
becomes Ujpj. The size of the complex parameters Uj is related to the proba-
bility of being reflected specularly instead of diffusively. It can be shown [84,6]
that

αj
βj

= iΓ
1− Uj
1 + Uj

, (26)

where

Γ2 ≡ (ω2 + iνω − ω2
T )/D −Q2, (27)

and ~Q is the projection of the wavevector onto the surface. Notice that Γ0 in
Eq. (22) is simply Γ evaluated at Q = 0.

4.2 Reflectance

We consider an electromagnetic wave which impinges at an angle θ on the
surface z = 0 of an excitonic semiconductor which occupies the region z > 0.
We assume that x− z is the plane of incidence, so that the incident wavevec-
tor ~q = (Q, 0, q⊥), with Q = q sin θ, q⊥ = q cos θ, and q = ω/c. We consider
separately the cases of polarization normal to the plane of incidence or S po-
larization ( ~Ein = (0, Ein, 0)) and polarization within the plane of incidence or
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P polarization ( ~Ein = (q⊥, 0,−Q)Bin/q), where ~Ein and ~Bin are the amplitudes
of the electric and magnetic fields of the incident wave.

In the case of S incoming polarization, the incident field may couple only to
S polarized reflected and transmitted fields. We write the wavevector of the
transmitted fields as (Q, 0, q⊥i ) where we used the conservation of momentum
along the interface and where q⊥i , i = 1, 2 are obtained from the transverse
dispersion relation (21). Therefore, we write the transmitted electric field as

Ey = (E1e
iq⊥1 z + E2e

iq⊥2 z)ei(Qx−ωt), (28)

and we obtain the transmitted magnetic field from Maxwell’s equations,

Bx = −(q⊥1 E1e
iq⊥1 z + q⊥2 E2e

iq⊥2 z)ei(Qx−ωt)/q. (29)

For illustrative purposes, we ignore for the moment being the presence of a
dead layer at the surface of the semiconductor, and we apply the generalized
ABC (25) correponding to the y direction at z = 0, obtaining

E1

E2

= −αy + βyq
⊥
2

αy + βyq⊥1

χ2

χ1

, (30)

where χi ≡ ω2
p/{4πD[(q⊥i )2 − Γ2]} ≡ (εi − ε∞)/(4π) is the excitonic suscepti-

bility for the i-th mode. We define the surface impedance for S polarization
as

Zs = −Ey(0)

Bx(0)
, (31)

which may be evaluated indistinctively inside or outside of the semiconductor,
as Ey and Bx are continuous quantities. Employing Eqs. (28), (29), and (30),
we finally obtain

Zs = q
a1 − a2

q⊥2 a1 − q⊥1 a2

, (32)

where

ai =
1

q⊥i − Γ
+

Uy
q⊥i + Γ

, (i = 1, 2). (33)

Using the general formulae for the reflection amplitudes in terms of the surface
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impedance, we obtain[84,6]

Rs = |rs|2 =
∣∣∣∣
Zs − Zv

s

Zs + Zv

∣∣∣∣
2

, (34)

where Zv
s = 1/ cos θ = q/q⊥ is the surface impedance of vacuum for S polar-

ization.

We proceed in a similar way to obtain the surface impedance and the re-
flectance for the case of P polarization. In this case, the incoming field may
couple to two P polarized transverse transmitted waves with wavevectors
(Q, 0, q⊥1 ) and (Q, 0, q⊥2 ) as above, and also to one longitudinal transmitted
wave with a wavevector (Q, 0, q⊥3 ) which may be obtained from Eq. (23). Thus,
we have two additional waves and we require two additional boundary con-
ditions, namely, the x and z components of Eq. (25). Proceeding as in the S
polarized case, we define the surface impedance

Zp =
Ex(0)

By(0)
, (35)

for which we obtain the value

Zp =
1

q

∆12 + ∆23 + ∆31

ε1∆23/q⊥1 + ε2∆31/q⊥2
, (36)

where

∆ij = aibj − ajbi, (37)

ai are defined as in Eq. (33) with Ux replacing Uy and i = 1, · · · , 3,

bi =

(
1

q⊥i − Γ
+

Uz
q⊥i + Γ

)
γi, (38)

γ1 = −Q/q⊥1 , γ2 = −Q/q⊥2 , and γ3 = q⊥3 /Q. Finally, we obtain the reflectance
[84,6]

Rp = |rp|2 =

∣∣∣∣∣
Zp − Zv

p

Zp + Zv
p

∣∣∣∣∣

2

, (39)

with

Zv
p = cos θ = q⊥/q, (40)
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Fig. 4. Reflectance of ZnSe calculated for s polarization with the generalized ABC
formalism and employing the ABC of Pekar (solid, Uy = −1), Agarwal et al
(dashed-dot, Uy = 0), Fuchs-Kliewer (dashed, Uy = 1) and the results of a local
calculation (dots). The parameters are: θ = 85◦, ε∞ = 8.1, ω2

p/ω
2
T = 5.5 × 10−3,

ε0D/c2 = 5× 10−5, and ν/ωT = 10−5. (Taken from [6]).

the surface impedance of vacuum for P polarization [6].

As an example, in Fig. 4 and 5 we show the reflectance of ZnSe for both S and
P polarizations and employing different ABC’s. Figures were taken from Ref.
[6]. For both polarizations the local reflectance is very high between ωT and
ωL ≈ 1.0003ωT , and falls abruptly at ωL. After ωL there is a sharp minimum
in the case of S polarization at the matching frequency ωM ≈ 1.0004ωT ,
for which ε(~q = 0, ω) = 1, while there is a zero at the Brewster frequency
ωB ≈ ωM in the case of P polarization corresponding to the Brewster condition
ε(~q = 0, ω) = tan2 θ. Non local effects calculated with either of the Agarwal-
Pattnayak-Wolf [11], Fuchs-Kliewer [86], or the Pekar [4] ABC’s, diminish the
reflectance between ωT and ωL and soften the fall at ωL as non local models
allow the excitation of the propagating exciton 1, which may take energy away
from the interface towards the bulk. We find that the strongest nonlocal effects
are predicted by the Pekar model, while the weakest nonlocal manifestations
correspond to the Fuchs-Kliewer model.

In the calculations above, we have neglected the exciton-free dead layer, which
would be necessary to explain satisfactorily the experimental measurements.
The above derivations of Rp and Rs may be easily extended to include a surface
dead layer with a local dielectric constant ε∞. An example that describes the
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p

Fig. 5. Reflectance of ZnSe calculated for P polarization with the generalized ABC
formalism and employing the ABC’s of Pekar (solid, Ux = −1, Uz = −1), Agarwal
et al (dashed-dot, Ux = 0, Uz = 0), Fuchs-Kliewer (dashed, Ux = 1, Uz = −1) and
the results of local calculation (dots). Parameters are as in Fig. 4 except for the
angle of incidence θ = 45◦. (Taken from [6]).

dead layer effects in the reflectivity of CdS is given in Figs. 6 calculated for
normal incidence using Pekar ABC’s and for dead layer thickness in the range
from 0 up to 200 Å. Notice that the minimum in the reflectance shifts towards
the red as the width of the dead layer increases. A dead layer of width 100
Å yields the best agreement with experiment. In this calcualtion the electric
field has to be along a principal direction, as the theory above corresponds to
isotropic media while CdS has an hexagonal crystalline structure. For Fig. 6
the field was taken perpendicular to the c axis.

4.3 Surface Modes

Surface polaritons are electromagnetic modes that propagate along a surface
and are localized near it. Their amplitudes decay away from the surface in both
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Fig. 6. Normal incidence reflectivity using Pekar ABC’s for different dead-layer
thicknesses, with parameters correspoding to the An=1 excitonic transition of CdS:
h̄ωT = 2.55273 eV, D/c2 = 5.543× 10−6, h̄ν = 14meV, M = 0.9m0 (m0 is the bare
electronic mass) and ε∞ = 9.1. The crosses correspond to experimental results [21].
(Taken from [29]).

directions, within the medium and into vacuum. This decrease of the wave
amplitude is not associated with energy loss but is an intrinsic property of the
surface polariton modes. On the other hand, their amplitude might diminish
with distance along the propagation direction or with time as a consequence
of damping mechanisms. In this section we concentrate on surface polaritons
in the presence of spatial dispersion in excitonic semiconductors.

Surface modes are free oscillations of the electromagnetic fields and therefore
they may be excited even if they are not ‘forced’ by an external field such as an
incident wave. Thus, they may be obtained by analysing the reflectivity of the
system. In general, the field in the vacuum side of the surface is the sum of the
incident and the reflected field. In the absence of an incident wave, the total
field would be null except in the case in which the reflection amplitude has an
infinite value. Clearly, the pole of the reflection coefficient has to lie outside
of the light cone, Q > q, so that the normal component of the wavevector of
the reflected wave −q⊥ becomes imaginary. In this region, neither the inci-
dent nor the reflected wave carry energy and energy conservation imposes no
constriction on the magnitude of the reflection amplitude. Thus, the surface
modes may be identified with the poles of the reflection amplitude [87–89].
Using Eq. (39) we may write the dispersion relation of the normal modes for
P polarization implicitly as

Zp(Q,ω) + Zv
p (Q,ω) = 0. (41)
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ε(~q, ω)

d

θ

np

Fig. 7. Schematic drawing showing the principle of the attenuated total reflection
(ATR) method: light (solid arrows) is incident on the surface of a prism of index of
refaction np = [εp]

1/2 separated by a vacuum gap of width d from a semiconductor of
dielectric function ε(~q, ω), exciting surface exciton-polaritons (dashed arrow). The
geometry is the Otto [90] experimental array of the excitation and detection of
surface polaritons.

Substituting Eq. (36) and (40) we obtain the dispersion relation of the surface
polaritons of the semiconductor [32],

−a2b1 + a1b2 −
(

1− q⊥0 ε1
q⊥1

)
(a3b2 − a2b3) (42)

+

(
1− q⊥0 ε2

q⊥2

)
(a3b1 − a1b3) = 0,

where all the quantities (ai, bi, εi, q
⊥
0 = q0 cos(θ), and q⊥i ) are defined in the

previous section. We remark that due to spatial dispersion, surface excitons
coexist with a bulk propagating mode even for frequencies between ωT and
ωL, so that they are always of a lossy nature.[58]. A similar development may
be attempted for the case of S polarization, but in this case no solution is
found.

4.4 Attenuated total reflectivity (ATR)

The surface modes of a flat surface cannot be excited directly by illuminating
the surface, as their dispersion relation lies outside of the light cone. Thus, to
couple light with surface modes, a mechanism to increase the parallel wavevec-
tor Q is required. One method to experimentally excite and detect surface po-
laritons is that of attenuated total reflectivity (ATR) [90], first proposed and
applied by Otto to excite and detect surface plasmons at metallic surfaces. In
the Otto arrangement, a prism with a non-dispersive positive dielectric con-
stant εp > 1 is separated by a thin vacuum gap from the system under study
with dielectric function ε which supports surface modes. Within the prism, the
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Fig. 8. ATR spectra for the Cn=1 exciton of ZnO. The angle of incidence in the
prism, of index of refraction np = 3.41, is 50o. The width of the air-gap is 3600
Å. The ABC’s used are of the form Uz = −1 and Ux = |Ux|eiϕx and each curve is
labeled by the phase ϕx employed in its calculation. (Taken from [29]).

size of the wavevector
√
εpq is larger than q, and thus, for large enough angles

of incidence θ > θc the parallel wavevector Q =
√
εpq sin θ may surpass q,

where θc = sin−1(1/
√
εp) is the critical angle. In this situation, the field in the

vacuum gap becomes evanescent and in the absence of the semiconductor all
of the incoming energy would be reflected. This is the well known phenomenon
of total internal reflection. By placing the semiconductor close to the face of
the prism, the evanescent field may tunnel across the gap and couple with
the surface modes, transfering energy resonantly whenever (Q,ω) lies on their
dispersion relation, therefore attenuating the total reflectance. Thus, surface
modes manifest themselves as minima of the reflectance in the ATR setup.
In an alternative arrangement suggested by Kretschmann [91,92], the medium
supporting surface modes is deposited as a thin layer on the surface of the
prism. As discussed above, only P -polarized light may couple with surface
exciton-polaritons at homogeneous semiconducors.

In Fig. 8 we show the ATR spectrum of the Cn=1 exciton of ZnO calculated
with an extension to multiple layers of the non-local theory presented in Sect.
4.2 and for different ABC’s [29]. ZnO has a wurtzite structure and therefore
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possesses three excitonic transitions at about 3.4 eV due to the upper two
valence bands (A and B excitons, excited when ~E ⊥ ~c) and to the third va-

lence band (C excitons, excited when ~E ‖ ~c). The free C1 excitons of the
ground state are separated by crystal field splitting of about 40 meV from
the A1 and B1 excitons. Their longitudinal-transverse splittings are about 2
meV (A1) and 11 meV (B1 and C1). The spin-orbit splitting of the A1 and
B1 excitons is about 5meV [17]. The parameters used for the calculations are:
ε0 = 6.16, h̄ωT = 3.421 eV, h̄ν = 0.5 meV and M = 0.87m0 where m0 is
the bare electronic mass. In the calculations the small ( 30 Å) exciton-free
layer was neglected and the parameters corresponding to the experiments of
Lagois and Hümmer [17,93] were used. Fig. 8 shows spectra for Uz = −1 and
Ux = |Ux|eiϕx . Two values of |Ux| = 1.0, 0.5 were considered, which correspond
to specular and to partially diffuse scattering of excitons at the surface, respec-
tively, and several spectra were calculated for different values of the phase ϕ.
Fig. 8 shows that the Pekar ABC’s (|Ux| = 1, ϕx = π) produces the ATR min-
imum that is closer to experiment [93] and with the largest width, ≈ 3 meV.
However, the experimental linewidth [93] ≈ 6 meV is substantially larger, in-
dicating [29] that a more sophisticated formalism is needed. In particular, in
the caculation above, an isotropic response was assumed, while in the experi-
ment, the c axis was oriented along the surface and within the incidence plane,
so that the response to P polarized light is necessarily anisotropic. Further-
more, the interaction with the surface might not be well described by a simple
exciton-free dead layer. In the following sections we review some microscopic
approaches to the surface contributions to the optical properties of excitonic
semiconductors.

5 Interaction with surfaces

The potential due to the interaction of an exciton with its image produced at
the surface of a clean semiconductor repels the exciton away from the surface
and into the bulk [5,94]. However, the presence of impurities produces charges
near the surface that gives rise to extrinsic potentials that may either attract
or repel the excitons. Thus, the reflectivity of light from semiconductor sur-
faces may be drastically modified by the presence of impurities near surfaces,
within the so-called transition layer, due to interactions of the excitons with
the resulting surface potential [84]. Furthermore, absorption processes may
take place at the transition layer. Consequently, close to the surface exciton
polaritons may exhibit different behavior compared to that in the bulk.

Several theoretical models for semiconductor surfaces have been proposed be-
yond the primitive model of the dead layer in which an inert exciton-free layer
is produced at the surface due to an infinite repulsive potential [5]. More real-
istic continuous surface potential profiles have been proposed, from a simple
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repulsive linear potential [95] to Morse type potentials which also include an
attractive well [41]. The extrinsic contribution to the surface potential may be
due to surface treatments such as doping, illumination, electron and ion bom-
bardment. Consequently, a near-surface space-charge region is formed, which
may become attractive. The aim of this section is to investigate the motion of
excitons near surfaces of semi-infinite media and thin films taking into account
continuous potentials.

5.1 Semiinfinite systems

Excitons in semi-infinite semiconductors obey an effective mass Schrödinger
equation, as in Eq. (1). However, at the surface, translational invariance is
lost, and we have to add the interaction of the electron and the hole with
the surface, V (~re, ~rh). Within the effective mass approximation, Schrödinger’s
equation becomes

[
p2
e

2me

+
p2
h

2mh

− e2

εr
+ Vs(~re, ~rh)

]
Ψ(~re, ~rh) = EΨ(~re, ~rh), (43)

where we measure the energy relative to the gap, i.e., relative to the energy
required to create a free electron and a free hole. The solutions are usually ob-
tained by using approximated methods. We now describe briefly a commonly
employed adiabatic theory developed by Deigen and Glinchuk [96], Sakoda [97]
and Balsev [98], and recently described in Halevi’s [7] book, whose approach
we will follow.

Assuming that the surface lies parallel to the x− y plane, we make a transfor-
mation into relative ~r = (x, y, z) and center of mass ~R = (X,Y, Z) coordinates.
Thus,

[
P 2

2M
+
p2

2µ
− e2

εr
+ Vs(~r, Z)

]
Ψ(~r, ~R) = EΨ(~r, ~R), (44)

where we employed the translational symmetry along the surface to eliminate
X and Y from the potential V (~r, Z). We propose a solution of the form

Ψ(~r, ~R) = ϕ(~r, Z)φ(~R), (45)

which substituted into Eq. (44) yields

[
p2

2µ
− e2

εr
+ Vs(~r, Z)

]
ϕ(~r;Z) = Er(Z)ϕ(~r;Z), (46)
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which defines the binding energy −Er(Z) of the exciton at a given distance Z
of the center of mass from the surface. Er(Z) may play the role of a potential
energy for the center of mass motion,

[
P 2

2M
+ Er(Z)

]
φ(~R) = Eφ(~R), (47)

whenever the term

−h̄2

2M

[
∂2ϕ

∂Z2
φ+ 2

∂ϕ

∂Z

∂φ

∂Z

]
(48)

is negligible. The neglect of this term amounts to ignoring the kinetic energy
of the center of mass in comparison to the binding energy [84]. Eqs. (46) and
(47) define the adiabatic approximation.

5.2 Surface potential for excitons

Accounting for image charge forces only, Vs(~re, ~rh) takes the form [98]

Vs(~re, rh) =
pe2

ε0


 1

4ze
+

1

4zh
− 1√

(ze + zh)2 + x2 + y2


 , (49)

where the first two terms account for the interaction of the electron and the
hole with their respective image charges, and the last term is the interaction
of each particle with the image of the other. Here, p = (ε0 − 1)/(ε0 + 1)
is the image factor from within a semiinfinite medium with static dielectric
response ε0. Using the relative and center of mass coordinate transformation
and expanding to lowest order in 1/Z we rewrite the potential

Vs(r, Z) =
pe2

ε0Z3

[
1

8
z2 +

1

16
(x2 + y2)

]
. (50)

With the use of this expression Eq. (46) may be solved subject to the con-
ditions that the electron and the hole must remain in the half-space ze > 0
and zh > 0, or equivalently − M

mh
Z < z < M

me
Z. This could be done through a

variational approach using trial variational wave functions such as [98]

ϕ(~r, Z) ∝ sin
[
(
z

ZM
+

1

mh

)µπ
]

[ψ1s(~r) + α(Z)ψ2p(~r) + β(Z)ψ2s(~r)] , (51)
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or [99]

ϕ(~r, Z) ∝
[
1− e−ze/aB

] [
1− e−zh/aB

]
[ψ1s(~r) + α(Z)ψ2p(~r) + β(Z)ψ2s(~r)] .(52)

The former yields an approximate [98] expression

Er(Z) ' −Eb + V0e
−Z/aB + σpEb

a3
B

Z3
, (53)

for the eigenvalues of Eq. (46), which is valid for large Z. In Eq. (53) Eb is the
electron-hole binding energy far from the surface, aB is the effective exciton
Bohr radius and V0 = 12Eb. It is convenient [84] to rewrite Eq. (53) as

Er(Z) = −Eb + ∆E(Z), (54)

where the correction ∆E(Z) due to the interaction with the surface contains
a repulsive exponential contribution originated in the contact force besides a
repulsive dipolar 1/Z3 image force. Notice that a photon requires an energy
h̄ω = Eg + E to create an exciton with energy E with respect to the gap of
size Eg, while h̄ωT = Eg − Eb is the minimum energy required to create an
exciton within the bulk. Thus, we may write the center of mass equation (47)
as

[
P 2

2M
+ h̄ωT + ∆E(Z)

]
φ(~R) = h̄ωφ(~R), (55)

in which the energy shift ∆E(Z) plays the role of a potential energy corre-
sponding to the force that acts on the exciton as it approaches the surface, and
may be identified with a surface potential U(Z), such as that introduced by
Hopfield and Thomas [5] to explain the presence of an exciton-free dead-layer.

We remark that the potential (53) contains only repulsive terms due to the
contact and the image interactions at a neutral surface. Other terms, both
repulsive and attractive, may appear whenever the surface has impurity ions,
and frequently, simple model expressions for the surface potential, such as the
Morse potential, are employed.

5.3 Surface potential for the excitonic polarization

To deal with the propagation of light close to the surface of excitonic semi-
conductors it is more accurate to incorporate the continuous surface potential
than to assume abruptly terminated homogeneous regions. The continuous
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potential enters the polarization equation which couples the excitonic polar-
ization to the electromagnetic field, and which has to be solved together with
Maxwell’s equations.

Let us consider a dielectric occupying the half-space z > 0 with a potential
U(z) acting on the excitons close to the surface as in the previous section.
We can obtain the equation of motion for the polarization by first rewriting
Eq. (12) within a homogeneous excitonic semiconductor with response (15)

as an equation for the excitonic polarization 4π(ω2
T + Dq2 − ω2 − iνω) ~P =

ω2
p
~E. Now we separate q2 into its parallel and perpendicular components Q2 +

(q⊥)2 and identify q⊥ with −i∂/∂Z, which will allow us to incorporate spatial
inhomogeneities. Finally we add the surface energy V (Z) to the excitonic
energy h̄ωT + h̄2q2/2M to obtain [100]

[
∂2

∂z2
+ Γ2(z)

]
~P (z) = − ω2

p

4πD
~E(z), (56)

where

Γ2(z) =

[
ω2 − ω2

T + iωγ −DQ2 − 2
ωTU(z)

h̄

]
/D = Γ2

B + ∆Γ2(z), (57)

∆Γ2(z) =
2ωTU(z)

h̄D , (58)

and where we took advantage of the invariance along the xy-plane by assum-
ing a spatial dependence eiQx for all the fields. As ~D = ε∞ ~E + 4π ~P , the
electromagnetic wave equation takes the form

∇×∇× ~E =
ω2

c2

(
ε∞ ~E + 4π ~P

)
. (59)

which forms together with Eq. (56) a system of equations that has to be solved

for ~P and ~E to obtain the reflection and refraction of electromagnetic waves.
This problem shall be addressed below for S and P polarized light incident
onto the surface. We will assume x− z is the plane of incidence.

In the case of S-polarization the electric field and the corresponding excitonic
polarization have only a y-component. Consequently, Eqs. (56) and (59) reduce
to [100]

[
∂2

∂z2
+ Γ2(z)

]
Py(z) = − ω2

p

4πDEy(z), (60)
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[
Q2 − ε∞

ω2

c2
− ∂2

∂z2

]
Ey(z) = 4π

ω2

c2
Py(z). (61)

When the z-dependence of Γ is neglected, the solutions to these coupled equa-
tions are plane waves. Their amplitudes may be determined by applying ad-
ditional boundary conditions (ABC’s) besides the usual boundary conditions
at the surface, as shown in Sec. 4. This is a non-local approach which has
been widely studied [101,29,13]. The z-dependence of Γ impedes an analytical
solution, requiring a numerical integration [100] Ey(z) and Py(z). The cou-
pled differential equations may be integrated from a point z0 deep within the
bulk of the dielectric where the surface potential is negligible, and advancing
towards the surface. As there are two transverse modes with wave vectors q⊥1
and q⊥2 in the bulk, we perform the integration twice, with initial conditions
obtained from the asymptotic solutions Ey1(z) = eiq

⊥
1 z and Ey2(z) = eiq

⊥
2 z.

The polarization is a linear combination of the two corresponding solutions
Py = A1Py1 + A2Py2. With the aid of the ABC’s it is possible to obtain the
ratio A1/A2 and with the use of the Maxwell boundary conditions the reflec-
tivity may be determined. In the case of P -polarization, Eqs. (56) and (59)
yield

[
∂2

∂z2
+ Γ2(z)

]
Pj(z) = − ω2

p

4πDEj(z), j = x, z, (62)

iQ
∂Ez(z)

∂z
−
[
∂2

∂z2
+ ε∞

ω2

c2

]
Ex(z) = 4π

ω2

c2
Px(z), (63)

iQ
∂Ex(z)

∂z
+

[
Q2 − ε∞

ω2

c2

]
Ez(z) = 4π

ω2

c2
Pz(z). (64)

As in the previous case, if Γ is z-independent the solution of these equations
reduces to the usual non-local problem in which the reflected and transmit-
ted fields are plane waves whose amplitudes are determined from the ABC’s
(section 4). In the general case a numerical solution may be obtained as for
S-polarization, although for P -polarization there is a longitudinal mode in
addition to the two transverse modes. In view of this, the differential equa-
tions have to be integrated three times with initial conditions Ex1(z) = eiq

⊥
1 z,

Ex2(z) = eiq
⊥
2 z, and Ex3(z) = eiq

⊥
3 z, where q⊥1 and q⊥2 are the wave vectors of

the two transverse modes and q⊥3 corresponds to the longitudinal mode. The
various amplitudes and the reflectivity are obtained by applying boundary
conditions at the surface. A detailed procedure may be found in Ref. [100].

As excitons are repeled by the surface potential, the excitonic polarization at
the surface is expected to be small, so that the additional boundary condi-
tions are expected to be of little consequence whenever an appropriate surface
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Fig. 9. Reflectivity of a CdS surface calculated for normal incidence according to
the theory of Ruppin [100]. An exponential repulsive potential of height h̄ωB and
range a was included, with ωB/ωT = 0.012 and a equal to (a) 6 nm; (b) 4 nm; (c) 2
nm. The dashed curve shows the experimental measurements of Lagois et al. [93].
(Taken from [100]).

potential is chosen. This has been demonstrated by numerical studies [100]
which show that the refletivity spectra becomes insensitive to the ABC selec-
tion. Calculations were done using the Pekar and Fuchs-Kliewer ABC equa-
tions, which correspond to opposite extremes. A model repulsive exponential
potential of the form h̄ωBe

−z/a was considered, where h̄ωB is the height of the
potential at the surface and a measures the spatial extent. Numerical results
were reported for light with S-polarization incident onto ZnSe, which has a
zinc-blende structure and is isotropic, hence, is convenient for theoretical stud-
ies of the reflectivity at non-normal incidence of light. Variations of the surface
potential height from 0 up to 0.007 h̄ωT with a = 5 nm showed that for the
largest value of this potential the differences between the reflectivity curves
obtained using the Pekar and Fuchs-Kliewer is negligible. Additional studies
were done for CdS surfaces and were compared with experimental data for
the An=1 exciton, corresponding to a transition from the Γ7 valence band to
the conduction band. In this case, the CdS surface was characterized by a
potential height ωB = 0.012ωT with the spatial extend a being the adjustable
parameter. A good agreement of the calculated curve with the experimental
result of Lagois et al. [93] was achieved for a = 2 nm., as shown in Fig. 9
for normal incidence. The hexagonal axis c was taken along the surface and
perpendicular to the electric field.

On the other hand, Halevi et al. [29] studied the same system employing the
generalized form of the ABC equations (Eq. (25)) with an abruptly terminated
dead layer. This approach also yielded a good agreement with the experimental
data of Lagois et al. [93] when the Pekar ABC’s were employed. Although
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calculations with a continuous potential seem to circumvent the problem of
defining the appropriate ABC’s, the problem reappears as an arbitrariness in
the choice of the parameters of the potential, such as its height and range, as
long as they are not independently determined.

6 Thin Film

In this section we describe the interaction of exciton polaritons with surface
potentials within thin semiconductor films for both S and P polarizations.
Realistic models of the surface potentials with both intrinsic and extrinsic
contributions are considered. As in the previous section, the optical response
is determined by solving the equation of motion of the excitonic polarization
coupled with Maxwell’s equation for the electromagnetic field subject to ap-
propriate boundary conditions. A coordinate system is chosen such that the
semiconductor layer surfaces are parallel to the x− y plane and perpendicular
to the z-axis and such that the field propagates on the x − z plane, so that
all wave vectors are of the form ~q = (Q, 0, q⊥). We will deal separately with S
and P polarized waves.

6.1 S-polarization

In this case the equations that couple the excitonic polarization and the electric
field were given by Eqs. (60) and (61), which may be manipulated to uncouple
the polarization, yielding [41]

[
∂4

∂z4
+

(
ε∞

ω2

c2
−Q2 + Γ2(z)

)
∂2

∂z2
+ 2

(
∂Γ2

∂z

)
∂

∂z

]
Py(z) (65)

+

[(
ε∞

ω2

c2
−Q2

)
Γ2(z)− ω2

pω
2

c2D +
∂2Γ2

∂z2

]
Py(z) = 0.

We consider now a surface potential given by a superposition of exponential
potentials and infinite barriers,

U(z) =





U1e
−z/a + U2e

−2z/a

+U3e
−(L−z)/b + U4e

−2(L−z)/b, 0 < z < L,

∞, z < 0 or z > L,

(66)
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one on each surface of the film of width L. Solutions of Eq. (65) may then be
obtained from a the series expansion method by writing Py(z) as a superposi-
tion of bulk solutions

Py(z) =
∑

s=±1,±2

Ase
iq⊥s zFs(z), (67)

modulated at the surfaces by

Fs(z) = a0s +
∞∑

n=1

[
anse

−nz/a + bnse
−n(L−z)/b

]
, (68)

where q⊥s are the z-components of the wave vector corresponding to the four
transverse bulk solutions Eq. (21),

q⊥s = ±





1

2

[
Γ2
B + ε∞

ω2

c2
−Q2

]
± 1

2



(

Γ2
B − ε∞

ω2

c2
+Q2

)2

+
4ω2ω2

p

c2D




1/2




1/2

,(69)

two outgoing and two incoming. The coefficients ans and bns can be determined
by substituting Eqs. (67)-(69) in Eq. (65), obtaining a simple recurrence rela-
tion if the interaction between surfaces is negligible, i.e., whenever e−L/a � 1
and e−L/b � 1. Using Eq. (67) and (60) we find

Ey(z) = −4πD
ω2
p

∑

s

Ase
iq⊥s z

[
∂2Fs
∂z2

+
[
Γ2(z)− (q⊥s )2

]
Fs(z)

]
. (70)

The amplitudes As and the reflection and transmission amplitudes can then
be obtained by applying boundary conditions at z = 0 and z = L.

In Fig. 10 we show the normal incidence reflectance and transmitance of a
CdS film calculated with the Pekar ABC’s for different widths of the repulsive
transition layer. The calculated spectra display a blueshift as the thickness
of the transition-layer increases. This blueshift is also present in the dead-
layer model [37] where it is simply interpreted in terms of the quantization
of the exciton within the effective width Leff = L − (a + b) of the active
excitonic layer. At frequencies above ωT , the shift can be approximated by
δωi ≈ 2[ωi − ωT ](δa+ δb)/Leff where δωi is the change of the frequency of the
i-th resonance ωi when the width of the transition layers are increased by δa
and δb.

Fig. 11 shows the reflectivity of a GaAs film. As in Fig. 10, the reflectivity
displays peaks and dips which correspond to Fabry-Perot like oscillations of
the multiple transverse exciton polariton modes propagating in the active
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Fig. 10. Normal-incidence reflectance (upper panel) and transmitance (lower panel)
of a CdS film of thickness L = 1000Å with a repulsive transition layer of thickness
a = b = 60Å [(a) and (c)] and a = b = 90Å [(b) and (d)]. The surface potential
heigth is U1 = U3 = 5 meV and U2 = U4 = 0 and the material parameters of
CdS are h̄ωT = 2.55272 eV, h̄ωp = 0.29396 eV, ε∞ = 9.1, h̄ν = 0.124 meV, and
M = 0.94m0. (Taken from [41]).

semiconductor layer. An alternative microscopic formalism due to Cho et al.
[102], in which the excitonic wave function is deformed through terms of the
form e−pz and e−p(L−z), leads to similar results as the formalism presented
above, according to Fig. 11, if we identify the distortion parameter p with
1/a.

6.2 P -polarization

In this case the equations that couple the excitonic polarization and the electric
field were given by Eqs. (62)-(64) which may be combined to eliminate the
electric field, yielding
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Fig. 11. Normal-incidence reflectance of a GaAs film of thickness L = 2000Å calcu-
lated with a continuous surface potential with U1 = U3 = 5 meV, U2 = U4 = 0 and
a = 65Å (solid), and calculated with the microscopic theory of Cho et al. [102] with
distortion parameter p = 1/a. The material parameters of GaAs are h̄ωT = 1.515
eV, h̄ωp = 0.07106 eV, ε∞ = 12.6, h̄ν = 0.035 meV, and M = 0.298m0. (Taken
from [41]).

(
∂2

∂z2
+ ε∞

ω2

c2
−Q2

)[(
∂2

∂z2
+ Γ2(z)

)
Px(z)

]
(71)

− ω2
p

ε∞D

(
ε∞

ω2

c2
−Q2

)
Px(x)− iQ ω2

p

ε∞D
∂Pz(z)

∂z
= 0,

iQ
∂

∂z

[(
∂2

∂z2
+ Γ2(z)

)
Px(z)

]
+
ω2

c2

ω2
p

D Pz(z) (72)

−
(
ε∞

ω2

c2
−Q2

)(
∂2

∂z2
+ Γ2(z)

)
Pz(z) = 0.

Similar to the S-polarization case, we look for a solution as a superposition of
bulk modes

~P (z) =
∑

s

Ase
iq⊥s z ~Fs(z), (73)

modulated by

~Fs(z) = ~a0s +
∞∑

n=1

[
~anse

−nz/a +~bnse
−n(L−z)/b

]
, (74)

where s takes the values ±1, ±2, and ±3; q⊥±3 = ±q⊥3 corresponds to the
longitudinal solutions which are absent in the case of S-polarization. The
coefficients ~ans and ~bns in the series (74) are vectors within the incidence plane
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which may be obtained from the differential equations (71) and (72) assuming
that e−L/a � 1 and e−L/b � 1. Finally, the amplitudes of the reflected and
transmitted fields are determined by applying boundary conditions.

In Fig. 12 we show the reflectance spectra of a L = 48 nm thick CuCl film
over a MgO substrate for both S- and P -polarization calculated with Pekar’s
boundary conditions both in the presence of a repulsive exponential potential
(Eq. (66)) with U1 = U3 = 10 meV, U2 = U4 = 0, and a = b = 15Å, and in the
absence of a potential. To identify the origin of the abundant structure, the
transverse and longitudinal guided mode frequencies, for which q⊥1 = nπ/L
and q⊥3 = lπ/L with integer n and l are indicated. The transverse resonances
can be observed near ωT for both the S and P reflectance spectra. The guided
longitudinal resonances are expected to be present in the optical reflectance Rp

spectra for P -polarization at frequencies h̄ω3,l ≈ h̄ωL+(h̄2/2M)(πl/L)2 (ωL <
ω3,l). However, due to damping they are not discernible in the reflectivity.

It has been suggested [44] that the coupling to longitudinal exciton polaritons,
as well as other surface related effects, might be more readily visible in the
quantity [103,104] ∆45 ≡ Rp − R2

s, where both Rs and Rp are obtained at
an incidence angle of 45◦. The reason for this is that according to Fresnel’s
formulae for semiinfinite homogeneous local media, ∆45 = 0. Thus, when we
substract R2

s from Rp we eliminate any bulk background contribution to the
optical signal, enhancing the relative strength of the surface contributions.
Panel (c) of Fig. 12 [57] shows a broad minimum in the ∆45 spectra at ω > ωL
which results from the coalescence of the first (l < 5) longitudinal resonances.
It has been found that thinner films allow the separation of the contributions
from individual longitudinal resonances.

7 Entrapped states

Similar to electrons trapped in quantum wells, the center of mass of an exciton
may be trapped at the surface of a semiconductor if the excitonic potential
has a minimum, as would be the case for a Morse potential with both repulsive
and attractive components. Although the potential is expected to be narrow
and shallow, surface treatment such as intense illumination, electronic and
ionic bombardment [105], doping, heating and applying a bias may modify
this potential so that it may support a few bound states. In this case, the
center-of-mass excitonic spectrum may have discrete energy levels which may
manifest themselves in the optical spectra. These have been determined for
CdS [106,107] employing a Morse potential

U(z) = |Um|
[
e−2(z−zm)/a − 2e−(z−zm)/a

]
. (75)

35



Fig. 12. Reflectivity of S- and P -polarized light (panels (a) and (b) respectively)
incident at 45◦ onto a CuCl film over a MgO substrate. Panel (c) shows the dif-
ferential reflectance ∆45 = Rp − R2

s . The film thickness is L = 48 nm. The solid
curve corresponds to a repulsive surface potential (Eq. (66)) with U1 = U3 = 10
meV, U2 = U4 = 0, and a = 15Å, and the dotted curve correponds to no surface
potential. The frequencies for which q⊥1 = nπ/L and q⊥3 = lπ/L with integer n and
l are indicated. The sample parameters are ε∞ = 5.0, h̄ωT = 3.2022 eV, for the Z3

1s exciton. h̄ωp = 0.452 eV, M = 2.3m0, and εMgO = 3.1. (Taken from [57]).

For example [106], choosing a minimum energy Um = −5 meV, with zm =
60Å and a = 60Å yields two bound modes which correspond to the two
transverse frequencies (14) h̄ωT1 = 2.54990 eV and h̄ωT2 = 2.55237 eV, slightly
below the bulk excitonic transition at h̄ωT = 2.5527eV, and similarly, the two
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Fig. 13. We display in (a) the reflectivity spectrum of the An=1 exciton of CdS.
The interaction of the exciton with the surface is modeled according the potential
well depicted in (b). We consider that P -polarized light is incident at an angle of
80◦. The parameters are h̄ωT = 2.55272 eV, h̄ωLT = 1.86 meV, h̄ν = 0.124 meV,
ε∞ = 9.1, M = 0.94me. Taken from Ref. [106]

longitudinal frequencies (24) h̄ωL1 = 2.55176 eV and h̄ωL2 = 2.55423 eV. Fig.
13 shows that the reflection spectra for P -polarized light displays peaks due
to the excitation of all of the entrapped states.

The confinement of exciton states at the surface of CdS1−xSex with a small
quantity of Se, and at the surface of CdSe would lead to a very rich reflectance
spectra for P polarized light [108,109]. Unfortunately, the exciton damping at
the surfaces inhibits the detailed experimental observation of this structure,
as the peaks corresponding to different entrapped states overlap each other.
Nevertheless, the lineshape depends strongly on the exciton confinement and
quantization in the near-surface region. An excelent agreement between the-
ory and experiment was obtained by adjusting the parameters of a complex
potential of the form

U(z) = U1e
−(z−z1)/a1 − U2e

−(z−z2)/a2 + iU3e
−(z−z3)/a3 . (76)

As discussed in Sec. 6, the ∆45 = Rp−R2
s spectra at an incidence angle of 45◦

is very sensitive to the surface, as its value would be null according to Fresnel’s
formulae. It has very recently been suggested [57] that this sensitivity might
permit observation of the individual resonances due to the excitation of both
transverse and longitudinal excitons entrapped at surfaces. Fig. 14 shows the
∆45 spectra calculated for a thin CuCl film of width d = 48nm wih a Morse
complex surface potential that is able to sustain two transverse bound states
[57]. Fig. 14 shows that the contributions of the transverse entrapped states
to the S and P reflectivity is barely visible, while the contribution of the
longitudinal entrapped states to the P polarized reflectance seems negligible,
and their contribution for the S polarized reflectance is null. However, both
kinds of resonances are clearly visible in the ∆45 spectrum. Other experimental
and theoretical studies of the optical manifestation of excitons trapped at
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Fig. 14. We display spectra of Rs in (a), Rp in (b) calculated at an angle of incidence
of 45◦ and ∆45 in (c) for CuCl film of thickness d = 48 nm deposited on a MgO
substrate. An intrinsic surface-potential well has been considered with parameters
Um = 0.4 meV, zm = 50 Å, a = 50 Å, Ud = 10 meV and b = 15 Å. Three values of
the damping factor h̄∆ν(0) are included; 0 (dotted curve), 0.4 (thin solid line) and
2.0 (thick solid line). Taken from Ref. [57]

surfaces are presented in Refs. [108,109,105].
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8 Layered systems

We have shown above that when the polarization equation accounts for a con-
tinuous surface potential, the polarization and wave equations may be solved
numerically (Sec. (5.3)), or using a series expansion (Sec. (6)). Here we de-
scribe a multistep method, which is an alternative method to solve differential
equations, and we apply it to the study of single films, superlattices and mi-
crocavities.

To describe the multistep method we consider a semiconductor layer. We have
seen that the interaction of excitons with the surface may be modeled with a
continuous surface potential, and the optical response is then determined by
solving the coupled equations (56) and (59), subject to appropriate boundary
conditions. The surfaces of the layer are assumed parallel to the x−y plane and
perpendicular to the z-axis and the plane of incidence is taken to be the x− z
plane. As S and P polarized waves are uncoupled, we study them separately.

8.1 Transfer matrix for S-polarization

For S polarized light ~P (~r, t) = (0, Py(z)ei(Qx−ωt), 0) and ~Py(z) obeys the differ-
ential equation (65), which we solve following Kiselev’s [110] multistep method.
We divide the z axis into intervals Ii = (zi−1, zi) of width di = zi − zi−1 so
small that the continuous potential may be assumed to be constant within
each of them, and we construct a transfer matrix for each step. Within Ii,
Py(z) can be written as a superposition of terms with the form e±iq

⊥
niz, with

(
q⊥ni
)2

=
1

2

[
Γ2(zi) + ε0

ω2

c2
−Q2

]
(77)

±1

2



(

Γ2(zi)− ε0
ω2

c2
+Q2

)2

+
4ω2ω2

p

cD




1/2

,

where n = 1, 2 denote the two transverse exciton-polariton modes correspond-
ing to the i-th step, zi = (zi + zi−1)/2 and the surface potential at Ii is
accounted for through Γ2(zi). Since there are four propagating modes at each
step, we require four independent fields to construct the transfer matrix. We
chose the tangential components of the electric field Ey, of the magnetic field
Hx, the excitonic polarization Py and its normal derivative ∂Py/∂z, all of
which are continuous quantities according to Maxwell’s equations and Eq.
(60). Each field is expressed in terms of the amplitudes of the modes traveling
to the right (increasing z) (+) and left (−). Thus we write for z ∈ Ii
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Ey(z) =
2∑

n=1

[
E+
nie

iq⊥niz + E−nie
−iq⊥niz

]
, Hx(z) =

i

ω

∂Ey
∂z

, (78)

Py(z) =
2∑

n=1

χni
[
E+
nie

iq⊥niz + E−nie
−iq⊥niz

]
, P ′y(z) =

∂Py(z)

∂z
, (79)

where

χni =
ω2
p

4πD
1

(q⊥ni)2 − Γ2
. (80)

Eqs. (78) and (79) may be summarized in matrix form as



F
P



z

= Gi



A1i

A2i



z

, (81)

where

F =



Ey

Hx


 , P =



Py

P ′y


 , Ani(z) =



E+
nie

+iq⊥niz

E−nie
−iq⊥niz


 , (82)

Gi =




1 1 1 1

−Y1i Y1i −Y2i Y2i

χ1i χ1i χ2i χ2i

iq⊥1iχ1i −iq⊥1iχ1i iq
⊥
2iχ2i −iq⊥2iχ2i




, (83)

with surface admittance Yni = q⊥ni/q0. Evaluating Eq. (81) at zi−1 and zi we
may eliminate the amplitudes E+

ni and E−ni to write [43]



F
P



zi

= Mi



F
P



zi−1

, (84)

where

Mi = GiTiG
−1
i (85)

is the transfer matrix of the interval Ii, with

Ti = diag(eiq
⊥
1idi , e−iq

⊥
1idi , eiq

⊥
2idi , e−iq

⊥
2idi) (86)
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a diagonal translation matrix of dimension 4×4.

As Mi transfers continuous quantities F and P , to build the transfer matrix
M of a finite layer, such that



F
P



zR

= M



F
P



zL

, (87)

we simply multiply

M = MN · · ·M2M1, (88)

where N is number of intervals, zL = z0 and zR = zN are the leftmost and
rightmost positions within the finite layer. Notice that for any thin interval
detMi = 1 and therefore, for any layer detM = 1.

8.2 Transfer matrix for P -polarization

The polarization vector for P polarized light has the form ~P (~r, t) = (Px, 0, Pz)e
i(Qx−ωt)

and obeys equations (71) and (72). We employ a multistep method similar to
that introduced above for S polarization. Now we have to account at each
interval Ii for a longitudinal mode with wavevector

(q⊥3i)
2 = Γ2(zi)−

ω2
p

ε0D
. (89)

besides the two transverse modes which appear for S polarization, with wavevec-
tors given by Eq. (77). At each interval the fields are given by a superposition
of three waves propagating in the z direction and other three waves propa-
gating in the −z direction. Consequently, six independent fields are required
to construct the transfer matrix. We chose the continuous fields Ex, Hy, Px,
Pz, ∂Px/∂z, and ∂Px/∂z, which in analogy to Eqs. (78) and (79) have the
following form

Ex(z) =
3∑

n=1

[
E+
nie

iq⊥niz + anE
−
nie
−iq⊥niz

]
, (90)

Hy(z) =
2∑

n=1

Yni
[
E+
nie

iq⊥niz + E−nie
−iq⊥niz

]
, (91)

Px(z) =
ω2
p

4πD
3∑

n=1

χni
[
E+
nie

iq⊥niz + anE
−
nie
−iq⊥niz

]
, (92)
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Pz(z) =
ω2
p

4πD
3∑

n=1

χniDni

[
−E+

nie
iq⊥niz + anE

−
nie
−iq⊥niz

]
, (93)

where for the transverse modes n = 1, 2, Zni = (q⊥nic)/(εniω) is the surface
impedance, Yni = 1/Zni is the surface admittance, εni = ε∞ + 4πχni is the
dielectric response evaluated at the n-th mode of the i-th interval, χni is the
corresponding susceptibility given by Eq. (80), Dni = Q/q⊥ni, and an = −1,
while for the longitudinal mode D3i = −q3i/Q, and a3 = 1. In matrix notation,
we write



F
P



z

= Gi




A1i

A2i

A3i



z

, (94)

where

F =



Ex

Hy


 , P =




Px

Pz

∂Px/∂z

∂Pz/∂z




Ani(z) =



E+
nie

+iq⊥niz

E−nie
−iq⊥niz


 , (95)

Gi =




1 −1 1 −1 1 1

Y1i Y1i Y2i Y2i 0 0

χ1i −χ1i χ2i −χ2i χ3i χ3i

−D1iχ1i −D1iχ1i −D2iχ2i −D2iχ2i D3iχ3i −D3iχ3i

iq⊥1iχ1i iq⊥1iχ1i iq⊥2iχ2i iq⊥2iχ2i iq⊥3iχ3i iq⊥3iχ3i

−iq⊥1iD1iχ1i iq
⊥
1iD1iχ1i −iq⊥2iD2iχ2i iq

⊥
2iD2iχ2i iq

⊥
3iD3iχ3i iq

⊥
3iD3iχ3i




.(96)

The field and polarization at the edges of Ii are related again by Eq. (84),
where the transfer matrix Mi is given by Eq. (85) but where Gi is now the
6× 6 matrix given by Eq. (96) instead of the 4× 4 matrix (83), and where

Ti = diag(eiq
⊥
1idi , e−iq

⊥
1idi , eiq

⊥
2idi , e−iq

⊥
2idi , eiq

⊥
3idi , e−iq

⊥
3idi), (97)

is a diagonal translation matrix of dimension 6× 6 instead of the 4× 4 matrix
(86). In analogy to the S-polarization case, we use the continuity of F and P
to obtain the total transfer matrix of a finite layer. The result is again given
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by Eqs. (87) and (88), but in this case, the transfer matrix of each interval is
of dimension 6× 6. As in the previous case, detM = 1.

8.3 Transfer matrix collapse

We have shown above that the transfer matrix of a single layer is of dimension
m×m, where m is the number of modes, including those moving in the z and
in the −z direction. For S and P -polarization the corresponding matrices are
of dimension 4 × 4 and 6 × 6, respectively. The usual optical transfer matrix
[111] of an insulator layer is of dimension 2 × 2. Therefore, at the interface
between a nonlocal semiconductor and a local insulator we should account
for this difference. To match the matrix of a semiconductor with that of the
insulator, it is necessary to reduce the dimension of the semiconductor matrix.
To that end, we apply ABC’s at the interface to collapse the n×n matrices to
2× 2 matrices. We use the generalized form for the ABC’s given by Eq. (25).

In the case of S polarization the additional boundary conditions at the two
interfaces of the semiconductor layer yield two equations which, together with
the third and fourth rows of Eq. (87) allow us to eliminate the two components
of P(zL) and the two components of P(zR), and to obtain a relation [43]

F(zR) = NF(zL), (98)

which involves only the two compnents Ey and Hx of the field F at zL and
zR. The matrix

N = Mff − (Mfp +Mfp′α)S−1(αMpf +Mp′f ) (99)

plays then the role of an optical 2 × 2 transfer matrix which may be simply
multiplied with the transfer matrices

MI =




cos(q⊥I dI) −iYI sin(q⊥I dI)

−iZI sin(q⊥I dI) cos(q⊥I dI)


 , (100)

of the adjacent insulating layers, where ZI = q0/q
⊥
I = 1/YI is the surface

impedance of the insulator of width dI , YI is its surface admittance, and q⊥I is
the normal component of the wavevector within the insulator. Here, we wrote
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the transfer matrix of the semiconductor in block form

M =




Mff Mfp Mfp′

Mpf Mpp Mpp′

Mp′f Mp′p Mp′p′



, (101)

where Mff is 2 × 2 block that connects F(zL) directly to F(zR), Mfp is the
2×1 block that connects P(zL) to F(zR), while Mfp′ is the block that connects
(∂/∂z)P(zL) to F(zR), and so on, and

S = αMpp + αMpp′α +Mp′p +Mp′p′α (102)

is a 1× 1 block. To arrive at Eq. (99) we normalized the coefficient βy → 1 in
the generalized ABC (25) and we renamed αy → α.

In the P -polarization case, we apply the ABC’s (25) at both interfaces, ob-
taining 4 equations, which together with rows 3-6 of Eq. (87) permits the
elimination of the four components of P(zL), and the four components of
P(zR), and to find a relation of the form (98) between the two components Ex

and Hy of the field F at zL and zR, through another 2× 2 transfer matrix N ,
appropriate for P -polarization [38], which may be simply multiplied by the
transfer matrices

MI =




cos(q⊥I dI) iYI sin(q⊥I dI)

iZI sin(q⊥I dI) cos(q⊥I dI)


 , (103)

of the adjacent insulating layers. The expression for N is identical to that for
S polarization given in Eqs. (99) and (102), but now Mfp, Mfp′ , Mpf , Mpp,
Mpp′ , Mp′f , Mp′p, and Mp′p′ , are 2 × 2 block submatrices, we normalized the
ABC coefficients βx = βz = 1 (Eq. (25)) and we introduced the 2 × 2 ABC
matrix α = diag(αx, αz).

8.4 Superlattice normal modes

We consider the superlattice depicted in Fig. 15, which is a bilayer periodic
system. The insulator layers (I) have dielectric constant εi and thickness di,
while the semiconductor layers (S) have dielectric function ε(ω, ~q) and thick-
ness dS. For S-polarization the transfer matrix of the semiconductor is of
dimension 4×4, while that for P -polarization is of dimension 6×6. To match
these matrices with those of the insulator, the matrices are first collapsed into
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Fig. 15. Superlattice made up of alternating excitonic semiconductor layers (S) of
thickness ds and isulator layers (I) of thickness di. We illustrate the transverse (T )
modes that may propagate within insulating layers and the manyfold transverse
(T ) and longitudinal (L) modes that may propagate within semiconductor layers.
We also show a wave incident from vacuum (V ) incident at an angle θ and the
corresponding reflected wave. Taken from Ref. [38]

2×2 matrices N , so that the optical transfer matrix of a period is M = MIN ,
as described in the previous section.

According to Bloch’s theorem, the field at a periodic system may be written
as a superposition of Bloch waves, whose amplitude is simply multiplied by a
phase factor eipd whenever we apply a translation of one period d = ds + di.
Thus, eipd is an eigenvalue of the transfer matrix M , and we may write [38]

[
M − Ieipd

]
F(0) = 0. (104)

As detM = 1, the dispersion relation of the normal modes becomes simply

2 cos(pd) = tr(M). (105)

Here p is the one-dimensional Bloch’s wavevector and tr stands for the trace
of the matrix. Eq. (104) is valid for both S and P polarizations.

Eq. (104) allows us to obtain the surface impedances Zs ≡ −Ey(0)/Hx(0) and
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Fig. 16. Disperison relation ω vs. p = Re p + iIm p of the electromagnetic normal
modes of a periodic superlattice made up of alternating CdS and vacuum layers of
width ds = di = 773Å. The parallel component of the wavevector Q is chosen so
that coupling with light incident at and angle of θ = 60◦ is possible. The frequencies
of the transverse (T ) and longitudinal (L) resonances are indicated. Taken from Ref.
[38]

Zp ≡ Ex(0)/Hy(0) of a truncated semiinfinite superlattice, which has the form

Zα = ± M12

M11 − eipd
= ±M22 − eipd

M21

, (106)

where the upper sign (+) corresponds to S polarization and the lower sign
(−) corresponds to P polarization. The optical reflectance for a semiinfinite
superlattice can be obtained from the surface impedance using Eq. (34) for S
and Eq. (39) for P polarized light.

In Fig. 16 we show the dispersion relation of the P polarized normal modes
of a superlattice made up of alternating CdS and insulator layers, with pa-
rameters corresponding to the An=1 excitonic transition [38], as obtained from
Eq. (105). For simplicity, we assumed a constant excitonic potential up to the
interface and we considered a vacuum gap as the insulator layer. At frequen-
cies near the excitonic transition, the one-dimensional Bloch’s wavevector p
shows a structure which is produced by the multiple Fabry-Perot resonances
of the transverse and longitudinal modes excited within the excitonic layer.
To understand these resonances, in Fig. 17 we show the dispersion relation of
the modes of a homogeneous semiconductor. At frequencies below ωT there
are no longitudinal waves, only one long-wavelength transverse mode propa-
gates. The resonances apparent in Fig. 16 below ωL appear when this mode
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Fig. 17. Dispersion relation ω vs. q of the two transverse (T) and the longitudinal
(L) exciton polariton modes of CdS, close to its An=1 excitonic resonance, which
may couple to light incident at an angle θ = 60◦. The wavevectors nπ/ds which
lead to resonant behavior in the semiconductor layer of thickness ds = 773Å are
indicated. Taken from Ref. [38]

satisfies approximately the guided mode resonance condition q⊥1 = nπ/ds. At
ω > ωL one additional longitudinal wave emerges, with a wavevector that
grows rapidly with ω and originates resonances whenever q⊥3 = nπ/ds. The
longitudinal field is confined within the semiconductor layers since there is
no longitudinal mode propagating in the local media, so the corresponding
resonances may be regarded as guided longitudinal modes.

Above the critical frequency ωc =
[
ω2
T + ω2

p/(ε0 − sin2(θ))
]1/2

a second trans-
verse mode propagates in the semiconductor; it has a long wavelength and its
dispersion follows closely that obtained with the local model. Consequently,
the structure of the Bloch wave vector becomes somewhat complex, as it is
produced by the resonances of one longitudinal and two transverse modes. In
our example, no resonances due to the second transverse waves are visible.

In Fig. 18 we show the optical reflectance for P polarization of a semiinfinite
superlattice corresponding to that presented above. The reflectance exhibits
peaks which correspond to the longitudinal and transverse guided modes dis-
cussed above, both of which may couple at the surface with the incoming and
reflected transverse waves in vacuum. The reflectance of a superlattice has
also been calculated with other ABC’s as well. As expected, the Ting et al.
ABC leads to a smaller coupling between modes at the surfaces and there-
fore to a smother structure in the reflectance [38]. When surface dead layers
are accounted for, the active excitonic layer thickness decreases and there-
fore the resonance condition of the excitonic waves is met at higher energies.
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Fig. 18. Reflectivity spectra of a semi-infinite superlattice (solid) and of a single
CdS film (dashed) calculated with the Pekar ABC.The frequencies of the transverse
(T) and longitudinal resonances are indicated, as well as ωL. Taken from Ref. [38]

.

Consequently, the resonances of the reflectivity suffer a blue shift [39].

8.5 Entrapped states in superlattices

In Sec. 7 we have shown the possibility of trapping longitudinal and transverse
exciton states near surfaces of semiconductors subject to potentials with an
attractive well. The longitudinal trapped states manifest themselves as struc-
tures in the reflectance for P polarized light below ωL, while the transverse
states appear as structures below ωT for both S and P polarization. Using the
transfer matrix formalism presented above, the optical spectra of superlattices
with continuous potentials capable of trapping excitons at their surfaces can
be calculated. Fig. 19 shows the reflectivity spectra calculated for both S and
P polarizations for a semiinfinite two-layer periodic system with one layer be-
ing of a semiconductor of thickness ds = 620 Å and the other layer being
an insulator of thickness di = 480 Å. The excitons are trapped by a Morse
potential well (75) with the same parameters as in Sec. 7. The coupling of
light to the localized transverse modes manifest themselves as broad maxima
for S and P polarization, while longitudinal entrapped modes yield sharp dips
for P polarization only, somewhat shifted from the calculated energy eigen-
values. Notice that these structures are enhanced in the superlattice (Fig. 19)
as compared to the corresponding structures in semiinfinite semiconductors
(Fig. 13) simply due to their large surface to volume ratio. Notice also that
the entrapped states produce an abundant structure below ωT and ωL, where
only one transverse wave may propagate across the semiconductor layers.
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Fig. 19. P -polarized (a) and S-polarized (b) reflectivities of a semiinfinite superlat-
tice made up of aleternating CdS and vacuum layers of widths ds = 620 Å and
dI = 480Årespectively for frequencies close to the An=1 excitonic transition. The
interaction of the excitons with the surfaces are modeled with a truncated Morse po-
tential of depth Um = −5 meV, range a = 60Åand centered at zm = 60Åfrom each
surface. The angle of incidence is θ = 80◦. We indicate the energy eigenvlaues of the
bound states in the potential well as Ti and Li for the transverse and longitudinal
modes, respectively. Taken from Ref. [112]

8.6 Optical response of microcavities

The transfer matrix method presented in Secs. 8.1, 8.2, and 8.3 may be used to
study novel optical devices such as microcavities. These consist of Fabry-Perot
resonators in whose interior a quantum system is placed. By tuning the reso-
nance frequency of the cavity to a transition energy of the system, interesting
effects such as Rabi splitting may be explored. Solid state microcavities may
be built by growing dielectric mirrors made up of superlattices, as in the previ-
ous sections, and the quantum system may be a quantum well or an excitonic
semiconductor. In this section we describe the optical response of excitons in
semiconductor microcavities [113,5,114,115,48,53,49,47,116]. As an illustrative
example we describe the work of Tredicucci et al. [53,113], who grew several
samples by MBE. Full-cavity samples were made of two Bragg reflectors com-
posed of ∼ 20 bilayers of Al0.18Ga0.82As/AlAs, with corresponding dielectric
functions ε1 = 11.7 and ε2 = 9.8 and thicknesses of 595 and 696Årespectively.
The reflectors were separated by an active layer made up of GaAs. Different
cavity widths close to λ/2 were explored, i.e., the cavity was tuned close to the
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Fig. 20. Normal incidence calculated (solid curve) and the experimental (dashed
curve) reflectivities for full microcavities. The cavity width was taken as 1148 Å and
1160 Å for the upper and lower panels, respectively. The scaling of the experimental
data is unspecified. Taken from Ref. [112]

the excitonic transition of GaAs and the optical reflectance and luminiscence
were measured as the optical energy was scanned close to the resonance. Two
main peaks and several secondary peaks were observed and ascribed to the
Rabi-splitted excitonic transition, with the secondary structure arising from
the center of mass quantization. Qualitative agreement (Fig. 20) was obtained
between experiment [5] and a calculation [112] in which the active excitonic
layer of GaAs is described according to Hopfield and Thomas model (Eq. (15))
with no surface potential, with parameters h̄ωT = 1.515 eV, h̄ωp = 0.07106
eV, hν = 4 × 10−4 eV, ε∞ = 12.53, and M = 0.2m0, and with active layer
widths 1148 and 1160 Å.

Similar features have been observed in the luminescence spectra of open and
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Fig. 21. Low temperature luminescence spectra of an open wedge shaped GaAs mi-
crocavity taken for different spot positions over the wedge, so that different spectra
correspond to different cavity thickness, increasing from top to bottom. The inset
shows an experimental (solid curve) and calculated (dashed curve) luminescence
spectra for the half cavity. Taken from Ref. [114].

closed microcavities [114] of continuosly varying width, which can be accom-
plished by growing a wedge shaped cavity and varying the lateral position at
which it is excited (Fig. 21). For very wide open cavities a peak below the exci-
tonic transition is observed, corresponding to a photon-like exciton-polariton
(Fig. 3) which becomes exciton-like for narrower cavities as the luminiscence
line approaches the excitonic transition energy 1.515 eV. For closed cavities,
additional peaks are observed above the excitonic transition [108] correspond-
ing to the Rabi-splitted exciton with a discrete positive shift due to the kinetic
energy of the center of mass motion quantized due to the boundary conditions
at the cavity edges [48,53,49,47]. Only odd modes appear due to a parity se-
lection rule, obtained from the overlap integral of the exciton and the cavity
photon wave functions [108].
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9 Scaterring of light by small excitonic particles

In this section we apply the formalism developed in Sec. 4 to the study of the
optical properties of small particles made of excitonic semiconductors with
simple shapes.

9.1 Spheres

We extend here the classical Mie theory [117] of the optical properties of
spherical particles, incorporating excitonic effects [118]. As in Mie theory, the
incident and scattered electromagnetic fields are expanded in terms of vec-
tor spherical wave functions [117], and we apply both elecctromagnetic and
additional boundary conditions at the surface of the sphere to determine the
amplitudes of the scattered fields. These amplitudes can then be employed
to calculate the scattering and extinction cross sections. The formalism is
applied to the study of the optical properties ZnSe spheres [118] and CuCl
micro-crystals [119]. In the case of micro-crystals, we compare the calculated
excitonic absorption with the experimental measurements.

Let us consider a sphere of radius R and bulk dielectric response function
ε(~q, ω) given by Eq. (15), and let it be irradiated by plane waves. The elec-
tromagnetic fields may be expanded in terms of the following spherical vector
wave functions [118]

~Mσmn(kr, θ, φ) =
1

k
∇× [k~r Yσmn(θ, φ)zn(kr)], (107)

~Nσmn(kr, θ, φ) =
1

k
∇× ~Mσmn(kr, θ, φ), (108)

~Lσmn(kr, θ, φ) =
1

k
∇ [Yσmn(θ, ϕ)zn(kr)] , (109)

where σ = e (even) or o (odd) according to whether the associated Legendre
polynomial Pm

n (cos θ) is multiplied by cos(mφ) or sin(mφ) to obtain the real
spherical harmonic Yσmn(θ, φ), zn represents a spherical Bessel function jn
when we expand the incident wave or the field inside the sphere, or a spherical
Hankel function hn when we expand the outgoing scattered waves outside the
sphere. The wavevector k takes the value k0 =

√
εMω/c outside of the sphere,

within the host of dielectric response εM , and it runs over the values k1 and k2

corresponding to the + and − signs of Eq. (21), respectively, for the transverse
waves (107) and (108) within the sphere, and the value k3 given by Eq. (23)
for the longitudinal waves (109). Thus, outside the sphere the electric field has
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the form

~Eν(r, θ, φ) =
∞∑

n=1

in
2n+ 1

n(n+ 1)
[aνn ~Mo1n(k0r, θ, φ)− ibνn ~Ne1n(k0r, θ, φ)], (110)

with corresponding magnetic field

~Hν(r, θ, φ) =−√εM
∞∑

n=1

in
2n+ 1

n(n+ 1)
(111)

×[bνn ~Me1n(k0r, θ, φ) + iaνn
~No1n(k0r, θ, φ)],

where ν = i denotes the incident wave and ν = s stands for the scattered
wave. We have assumed that the incident wave is linearly polarized along the
x direction and propagates along the z direction, so that ain = bin = 1.

Within the sphere there are two transverse modes and one longitudinal mode.
The electric fields of the transverse modes are

~Eα(r, θ, φ) =
∞∑

n=1

in
2n+ 1

n(n+ 1)

[
aαn

~Mo1n(kαr, θ, φ)− ibαn ~Ne1n(kαr, θ, φ)
]
,(112)

and the corresponding magnetic fields are

~Hα(r, θ, φ) =−√εM
∞∑

n=1

in
2n+ 1

n(n+ 1)
(113)

×[bαn ~Mo1n(kαr, θ, φ)− iaαn ~Ne1n(kαr, θ, φ)],

where α = 1, 2. The electric field of the longitudinal mode is

~E3(r, θ, φ) =
∞∑

n=1

in
2n+ 1

n(n+ 1)
c3
n
~Le1n(k3r, θ, φ), (114)

and there is no corresponding magnetic field.

The coefficients asn, bsn, aαn, bαn (α = 1, 2), and c3
n may be determined by applying

electromagnetic and additional boundary conditions at the surface r = R and
using the orthogonality of the basis function set { ~Mσmn, ~Nσmn, ~Lσmn}. From
the scattered field coefficients asn and bsn we can calculate the total scattering
cross section

σs =
2π

k2
0

∞∑

n=1

(2n+ 1)
[
|asn|2 + |bsn|2

]
, (115)
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Fig. 22. Calculated extinction cross section of a ZnSe sphere of radius 75 Å using
the ABC’s of Pekar (P), Rimbey-Mahan (RM), and Fuchs-Kliewer (FK). The local
case is also shown (dashed curve). Taken from Ref. [118].

and the extinction cross section

σe = −2π

k2
0

∞∑

n=1

(2n+ 1)Re [asn + bsn] , (116)

where Re stands for the real part.

Fig. 22 shows the extinction cross section calculated [118] for a 75 Å sphere of
ZnSe as a function of the frequency. The results display different structures for
different ABC’s. The principal extintion peak is blue shifted in the non-local
calculations with respect to the local result. The shift is smaller for the Fuchs-
Kliewer (FK) ABCs [9] than for the Rimbey Mahan (RM) ABCs [10], and
is largest for the Pekar ABCs [4]. Near the energy of the excitonic transition
the FK curve exhibits four peaks, associated with resonances of the different
scattering amplitudes asn and bsn, the strongest of which corresponds to bs1. The
latter resonance is the only one present for the other ABCs considered.

In Fig. 23 we show the position of the excitonic absorption peak measured for a
system of small CuCl microcrystals embedded within a glass matrix [121]. The
theory above yielded a good agreement for the dependence of the peak position
on the size of the particles [119] when Pekar ABCs were employed. Similar
agreement was obtained for the experimental absorption of CuCl particles
within an NaCl matrix [122] and for CdS particles within glass [123].

Similar techniques have been employed to calculate the response of more elab-
orate spherically symmetric geometries. For example, in Ref [124], the normal
modes and the absorption of an excitonic spherical quantum dot at the center
of a spherical microcavity made up of alternating dielectric shells were cal-
culated. The nonlocality of the excitonic dot was accounted for through an
approximate separable susceptibility, and the electromagnetic field produced
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Fig. 23. We show the size dependence of the excitonic absorption peak of
CuCl spheres in a glass matrix. The full curve corresponds to a Lifshitz-Slezov
poly-dispersed size distribution, while the dashed curve corresponds to a monodis-
persed distribution. Circles represent the experimental data of Ekimob et al. [120].
Taken form Ref. [119].

by the excitonic polarization was obtained through a Green’s function tech-
nique. The resonant excitonic absorption displayed a Rabi splitting when the
cavity was tuned to the zero-dimensional polariton modes of the dot.

9.2 Cylinders

We study now an excitonic infinite cylinder of radius a and bulk dielectric
constant ε(~q, ω), given by Eq. (15), irradiated by a normally incident plane
wave. Similar to the sphere problem, the fields are expanded [125] in terms of
cylindrical vector wave functions,

~Mn(kr, θ) =
1

k
∇×

[
ẑZn(kr)einθ

]
, (117)

~Nn(kr, θ) =
1

k
∇× ~Mn, (118)

~Ln(kr, θ) =
1

k
∇
[
Zn(kr)einθ

]
, (119)

where cylindrical coordinates (r, θ, z) are used, ẑ is a unit vector in the z
direction, Zn represents a cylindrical Bessel function Jn when we expand the
incident wave or the field inside the sphere, or a cylindrical Hankel function
Hn when we expand the outgoing scattered waves outside the cylinder. As in
the case of the sphere, the wavevector k takes the value k0 =

√
εMω/c outside
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of the sphere, within the host of dielectric response εM , and it runs over the
values k1 and k2 corresponding to the + and − signs of Eq. (21), respectively,
for the transverse waves (107) and (108) within the sphere, and the value
k3 given by Eq. (23) for the longitudinal waves (109). Notice that there is
no z dependence in Eqs. (117)-(119), since we assumed normal incidence and
translationally invariant infinite cylinders. We study separately the cases when
the incident electric field points along the axis of the cylinder and when it
points across the axis.

Parallel polarization

In this case electromagnetic fields for the incident and scattered waves have
the form

~Eν(r, θ) =
∞∑

n=−∞
inbνn

~Nn(k0r, θ), (120)

~Hν(r, θ) = −i√εM
∞∑

n=−∞
inbνn ~Mn(k0r, θ), (121)

where ν = i stands for the incident fields, with bin = 1, and ν = s is for
the scattered fields, with amplitudes bsn. Within the cylinder there are two
transverse modes α = 1, 2 with corresponding fields

~Eα(r, θ) =
∞∑

n=−∞
inbαn

~Nn(kαr, θ), (122)

Hα(r, θ) = −ikαc
ω

∞∑

n=−∞
inbαn

~Mn(kαr, θ), (123)

and no longitudinal field. The unknown coefficients, bsn and bαn are determined
using the usual boundary conditions and the Pekar ABC. We only write the
result for the scattered amplitudes

bsn = −Rs/Sn, (124)

where

Rn = Jn(k0a)
[
(ε1 − ε∞)

√
ε2Jn(k1a)J

′
n(k2a)

]
(125)

−Jn(k0a)
[
(ε2 − ε∞)

√
ε2J

′
n(k1a)Jn(k2a)

]

+
√
εMJ

′
n(k0a)Jn(k1a)Jn(k2a)(ε2 − ε1),
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Rn =Hn(k0a)
[
(ε1 − ε∞)

√
ε2Jn(k1a)J

′
n(k2a)

]
(126)

−Hn(k0a)
[
(ε2 − ε∞)

√
ε2J

′
n(k1a)Jn(k2a)

]

+
√
εmH

′
n(k0a)Jn(k1a)Jn(k2a)(ε2 − ε1).

Here we introduced the quantities εα = (kαc/ω)2. The extinction width of
the cylinder, analogous in this essentially 2D problem to the extinction cross
section of 3D scattering, is given by

Ce = − 4

k0

∞∑

n=∞
Re(bsn). (127)

Perpendicular polarization

For this polarization we write

~Eν(r, θ) =
∞∑

n=−∞
inaνn

~Mn(k0r, θ), (128)

~Hν(r, θ) = −i√εM
∞∑

n=−∞
inaνn

~Nn(k0r, θ), (129)

where ν = i stands for the incident light, with amplitude ain = 1, and ν = s
is for the scattered light of amplitudes asn. Inside the cylinder there are two
transverse modes α = 1, 2 with corresponding fields

~Eα(r, θ) =
∞∑

n=−∞
inaαn

~Mn(kαr, θ), (130)

Hα(r, θ) = −ikαc
ω

∞∑

n=−∞
inaαn

~Nn(kαr, θ), (131)

and a longitudinal mode, with electric field

~E3(r, θ) =
∑

inc3
n
~Ln(k3r, θ). (132)

As in the previous case geometry, the boundary conditions of electromagnetic
origin and the Pekar ABC’s allow us to determine the expansion coefficients
asn, aαn and c3

n. For asn we obtain

asn = −Pn/Qn, (133)
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where

Pn = αnJ
′
n(k0a)− βnJn(k0a), (134)

Qn = αnH
′
(k0a)− βnHn(k0a), (135)

αn =
k1

k0

(ε2 − ε∞)ε∞Jn(k1a) (136)

×
[
J
′
n(k2a)

k3

k0

J
′
n(k3a)− n2

k2a
Jn(k2a)

Jn(k3a)

k0a

]

+
k2

k0

(ε1 − ε∞)ε∞Jn(k2a)

×
[
J
′
n(k1a)

k3

k0

J
′
n(k3a)− n2

k1a
Jn(k1a)

Jn(k3a)

k0a

]
,

βn = (ε2 − ε∞)ε∞J
′
n(k1a) (137)

×
[
J
′
n(k2a)

k3

k0

J
′
n(k3a)− n2

k2a
Jn(k2a)

Jn(k3a)

k0a

]

+(ε1 − ε∞)ε∞J
′
n(k2a)

×
[
J
′
n(k1a)

k3

k0

J
′
n(k3a)− n2

k1a
Jn(k1a)

Jn(k3a)

k0a

]

− n2

k0a
(ε1 − ε∞)(ε2 − ε∞)Jn(k3a)

×
[
J
′
n(k1a)

Jn(k2a)

k2a
− J ′n(k2a)

Jn(k1a)

k1a

]
.

The extinction width of the cylinder is

Ce = − 4

k0

∞∑

n=−∞
Re(asn). (138)

In Fig. 24 we show the extinction width Ce calculated for CuCl nanocrystals
with radius 100 Å for both ~Ei ‖ ẑ and ~Ei ⊥ ẑ polarizations [125]. Both curves
show a peak close to the excitonic transition energy. The extintion width is
smaller for perpendicular polarization than for parallel polarization and is blue
shifted. Non-local effects diminish Ce with respect to the local result. As the
radius of the cylinder takes smaller values, the non-local peaks approach each
other. Similar behavior is observed for the local curves.
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Fig. 24. Extinction width Ce calculated for a CuCl cylinder of radius 30 Å, normal-
ized to the geometrical width 2a. Upper curves are for ~E ‖ ~z and lower curves for
~E ⊥ z. Dashed curves are calculated within the local theory. Taken from Ref. [125].

10 Scattering of light from non ideal surfaces

Until now we have dealt with smooth surfaces of semiconductors. In this Sec-
tion we describe the interaction of light with non ideal, random slightly rough
surfaces. Consider a semiconductor occupying the region z > ζr(~r‖), where
~r‖ = (x, y, 0) and ζr(~r‖) represents the deviation of the surface from the nom-
inal surface at z = 0. We assume that ζr is a random function of ~r‖ with null
average 〈ζr〉 = 0. We identify its second moment δ2

r = 〈ζ2
r 〉 with the character-

iztic size δr of the roughness, which we assume much smaller than wavelength
of light, and we assume that the two point correlation function is given by

〈ζr(~r‖)ζr(~r′‖)〉 = δ2
re
−|~r‖−~r′‖|2/L2

r , (139)

i.e., ζr is a zero-mean, stationary, Gaussian random process, with correlation
distance Lr which we assume to be much larger than δr, so that the slope of
the surface is small.

We choose x− z as the plane of incidence, and write the incident electric field
as [64]

~Ei(~r, t) = Ei [cosσ(x̂ cos θi − ẑ sin θi) + ŷ sinσ] ei(kxx+kzz−wt), (140)

where kx = k sin θi, kz = k cos θi, k = ω/c, θi the angle of incidence, and σ
is the polarization. P polarization corresponds to σ = 0, while S polarization
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corresponds to σ = π/2. As the height and slope of the surface are small, we
expand the scattered fields up to first order in the quantities kδr � 1 and
|∇ζr| ∼ δr/Lr � 1, and we write the field as ~Esc = ~E(0)

sc + ~E(1)
sc , where the

zeroth-order term is the field specularly reflected by the nominal flat surface

~E(0)
sc (~r, t) =

[
E(0)
p (kx)(x̂ cos θi + ẑ sin θi) + E(0)

s (kx)ŷ
]
ei(kxx−kzz−wt), (141)

and the first-order field is given by the Rayleigh expansion

~E(1)
sc (~r, t) =

∫ d2k,‖
(2π)2

~E(1)
sc (~k,‖)e

i(~k,‖·~r‖−k
,
zz−ωt), (142)

where

~E(1)
sc (~k,‖) = T̂

[
E(1)
p (~k,‖)(x̂

′ cos θ′ + ẑ′ sin θ′) + E(1)
s (~k′‖)ŷ

′
]
. (143)

Here x̂′ = ~k′‖/k
′
‖, k

′
‖ =| ~k′x |, ẑ′ = ẑ, ŷ′ = ẑ′ × x̂′, so that x′ − z′ is the

scattering plane with respect to which S and P scattered waves are defined,
θ′ is the scattering angle, which may take complex values, k ′x′ = k sin θ′, k′z′ =
(k2 − (k′x′)

2)1/2 = k cos θ′ and

T̂ =




k′x/k
′
‖ k′y/k

′
‖ 0

−k′y/k′‖ k′x/k′‖ 0

0 0 1




(144)

is a rotation matrix,

As in Sect. 5, we introduce a potential Ur(~r) that describes the interaction
of excitons with the rough surface. As the roughness is small, we assume
that locally the potential is given by the interaction with a flat surface,
Ur(~r) = U(z − ζf(~r‖)), where U(z) represents the interaction of excitons with
the nominal flat surface, and ζf (~r‖) is a local shift in the reference position of
the surface. In a pure system, we might expect that ζf coincides with ζr. How-
ever, the presence of impurities and defects which modify locally the potential
introduce additional randomness, so that we keep ζf as another random func-
tion which we expect to be highly correlated to the geometrical surface profile
ζr. We assume that ζf is also a Gaussian correlated random process, so that

〈ζf(~r‖)ζf(~r′‖)〉 = δ2
fe
−|~r‖−~r′‖|2/L2

f , (145)

〈ζr(~r‖)ζf(~r′‖)〉 = δrδfkrfe
−|~r‖−~r′‖|2/L2

rf , (146)
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where Lf is the correlation length of ζf(~r‖), Lrf is the mutual correlation
length of ζr(~r‖), δf is the height of the fluctuations in the reference position
of the surface, and krf = 〈ζr(0)ζf(0)〉/(δrδf). We further assume 〈ζf (~r‖)〉 = 0.

Assuming ζf is very small, i.e., δf � a� min {Lf , Lr, Lrf}, we expand

Ur(~r) = U(z)− U ′(z)ζf(~r‖). (147)

Here we introduced the width a of the surface transition layer, and we denoted
dU/dz by U ′. We notice that Ur(~r‖, z) has a random dependence on ~r‖ and a
deterministic dependence on z.

The zeroth order field ~E(0) and polarization ~P (0) obey a set of coupled equa-
tions which may be obtained immediately from Eqs. (56) and (59) by replacing
~E → ~E(0) and ~P → ~P (0). The first order field ~E(1) and polarization ~P (1) obey
an equation which can also be obtained from Eqs. (56) and (59) by first gen-

eralizing the arbitrary x and y dependence, i.e., replacing i ~Q by ∇‖, and then
performing a power expansion and identifying the first order contribution,
yielding

4πk2 ~P (1) +∇2 ~E(1) −∇(∇ · ~E(1)) + ε∞k
2 ~E(1) = 0 (148)

[
−h̄ω
M
∇2 + ω2

T − ω2 − iνω +
2ωT
h̄
U

]
~P (1) − ω2

p

4π
~E(1) = (149)

2ωT
h̄
ζf(~r‖)U

′ ~P (0).

As in sections 6.1 and 6.2, we may eliminate the electric field to obtain fourth
order differential equations for the polarization, similar to Eqs. (65), (71), and
(72). In the case of a Morse potential U(z) = U1e

−z/a +U2e
−2z/a, we may seek

solutions for the zero-th polarization similar to Eqs. (68) and (74),

~P (0)(x, z) = eikxx
3∑

α=1

A(0)
α êαe

ikαz
∞∑

n=0

anαe
−nz/a (150)

where kα (with α = 1, 2, 3) are the z-components of the wave vectors of the two
transverse (α = 1, 2) and the longitudinal α = 3 modes, and êα are correspond-
ing polarization vectors, either perpendicular to the wavevector (α = 1, 2) or
pararllel (α = 3). Substitution into the differential equation for the polar-
ization yields recursion relations from which we may obtain the coefficients
anα. The coefficients A(0)

m and B(0)
m are then determined from the boundary

condition equations. Explicit expressions are given in Ref. [64].
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The first order fields may be obtained in a similar fashion. First we construct
a fourth order differential equation for the polarization from Eqs. (148) and
(149). This is an inhomogeneous equation forced by the zeroth order polar-

ization (150). For each value of the scattered wavevector ~k′‖, the solution is
similar to the zeroth order solution, i.e., a combination of decaying exponen-
tials e−nz/a modulating the bulk-like solutions ∝ eik

′
αz. The coefficients of the

decaying exponentials may be obtained by substituting the proposed solution
back into the differential equation for the polarization and iterating over the
resulting recursion relations. Next, the first order field may be obtained from
the polarization, which still contains unknown coefficients, by applying Eq.
(149). Finally, the remaining coefficients and the fields scattered away from
the surface may be obtained by matching the resulting fields to the Rayleigh
expansion (142) by imposing boundary conditions at the rough surface z = ζr.
The details are given in Ref. [64].

To calculate the first order amplitudes it is convenient to factorize out of the
Rayleigh coefficients

E(1)
p (~k′‖) = Ep,r(~k′‖)ζr(~k′‖ − ~k‖) + Ep,f (~k′‖)ζf(~k′‖ − ~k‖), (151)

E(1)
s (~k′‖) = Es,r(~k′‖)ζr(~k′‖ − ~k‖) + Es,f (~k′‖)ζf (~k′‖ − ~k‖), (152)

the Fourier transforms of the surface profile ζr(~r‖) and the surface potential
reference position ζf (~r‖). The scattering cross section is obtained from the
time and ensemble averaged Poynting vector of the first order fields

〈~Ssc〉=
c

8π
Re〈

[
~E(1)
sc (~r, t)? × ~H(1)

sc (~r, t)
]
〉 (153)

=
c2

128π5ω

∫

<

d2k′‖

∫

<

d2k′′‖〈 ~E(1)
sc (~k′′‖)

? × [~k′ × ~E(1)
sc (~k′‖)]〉,

where ~k′ = ~k′‖ − k′z ẑ, the ? denotes the complex conjugate, and the symbol
< in the integral indicates that this should be evaluated within the light cone
k′‖ < ω/c, where k′z is real, and energy propagates away from the surface.
Using Eqs. (151) and (152) the average Poynting vector may be cast into the
form

〈~Ssc〉=
c2

32π2ω

∫

<

d2k′‖~k
′
[
| ~Esc,r |2 δ2

rL
2
re
−|~k′‖−~k‖|2L2

r/4
]

+ (154)

c2

32π2ω

<∫
d2k′‖~k

′
[
| ~Esc,f |2 δ2

fL
2
fe
−|~k′‖−~k‖|2L2

f/4
]

+

62



Fig. 25. Dimensionless cross section dσpp/dΩ of P polarized light scattered from
a ZnSe surface for P polarized incident light at an angle θi = 15o and scattering
angle θ′ = 3o in the plane of incidence for different cross correlation coefficients.
The excitonic potential is a repulsive exponential whose value at the surface is
U0 = 2.0meV, the roughness and potential heights are δr = δf = 8Å, and the
autocorrelation distances are Lr = Lf = Lrf = 2500Å. Taken from Ref. [64].

c2

32π2ω

∫

<

d2k′‖~k
′[2δrδfkrfL

2
rfRe( ~E∗sc,r · ~Esc,f )e−|

~k′‖−~k‖|2L2
r/4],

where we made use of the stationarity and Gaussian correlations (139), (145),
and (146) of ζr and ζf to evaluate the averages 〈. . .〉.

Finally, we define the dimensionless scattering cross section dσ/dΩ, as the

ratio of the energy flux density of light scattered into the direction of ~k′ =
k′(cos θ′ cosφ′, cos θ′, sinφ′, sin θ′) to the incident energy flux density. From Eq.
(154) we identify

dσ

dΩ
=

ω2

4πc2

cos θ′

cos θi

1

| ~Ei |2
{
[
| Ep,r(~k′‖) |2 + | Es,r(~k′‖) |2

]
δ2
rL

2
re
−|~k′‖−~k‖|L2

r/4 +(155)

[
| Ep,f (~k′‖) |2 + | Es,f (~k′‖) |2

]
δ2
fL

2
fe
−|~k′‖−~k‖|L2

r/4 +

2δrδfk
2
rfL

2
rf

[
Ep,r(~k′‖)

?Ep,f (~k′‖) + Es,r(~k′‖)
?Es,f (~k′‖)e

−|~k′‖−~k‖|L2
r/4
]
}.

The terms with δ2
r and δ2

f describe the power scattered from roughness and po-
tential fluctuations, respectively, and krf determines the scattered associated
with the cross-correlations between the functions ζr(~r‖) and ζf (~r‖).

In Fig. 25 we display the P incoming and P outgoing cross section dσpp/dΩ for
light scattering from a ZnSe rough surface. P -polarized light is incident at θi =
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15◦ and scattered at θ′ = 3◦. The structural parameters for the calculations
are; ε∞ = 8.1, h̄ωT = 2.8022eV , h̄ωp = 0.2334eV , (longitudinal-transverse
splitting h̄ωLT ≈ h̄ωp/2ωT ε∞ = 1.2meV ), and bulk damping h̄ν = 0.2meV .
For a single exciton branch the total mass takes the value M = 0.57m0. The
transition layer was modeled with an exponential potential with parameters
U1 = U0 = 2.0meV, U2 = 0, a = 50 Å. U0 denotes average height of the
potential at z = 0. The correlation parameters are δr = δf ≡ δ = 8 Å, and
Lr = Lf = Lrf ≡ L = 2500 Å. According to the first order formulae, for
P - (S-) polarized incident light, there is only P - (S-) scattered light in the
plane of incidence. For complete cross-correlation the cross section is similar
to the P polarized reflectance, with a maximum at ωT and a minimum at ωL.
As the cross-correlation diminishes, the minima dissapears and the maximum
increases its height and is blue shifted.

Fig. 26 shows the P → P and S → S cross sections (dσpp/dΩ) and (dσss/dΩ)
as functions of the scattering angle in the plane of incidence for a fixed photon
energy ω = ωL. Total cross correlation (krf = 1) is assumed and different
values are given to the angle of incidence θi. In the S − S case, the scattering
is maximum close to the specular direction. However, in the P − P case a
minimum appears close to the specular direction for large incidence angles.
This peculiar behavior is only observed close to ωL and is due to the excitation
of the longitudinal mode. At other frequencies and/or at small angles, the
P − P scattering looks qualitatively similar to the S − S scattering.

In Fig. 27 (a) we show experimental spectra [62] of dσpp/dΩ for the An=1

excitonic transition of CdS. Data were taken at different areas of the same
sample crystal with a fixed angle of incidence θi = 14◦ and scattering angle
θ′ = 4◦ within the plane of incidence. Fig. 27 (b) corresponds to calculated
spectra. Four experimental curves are shown. Curve 1 displays a maximum
at the longitudinal frequency ωL. Similar structures have been observed in
different high quality samples. However, in some cases the shape is quite dif-
ferent as it may exhibit a broad shoulder or even a peak at the excitonic
transition energy ωT , as exemplified by curves 3 and 4 of the same figure.
Curve 2 lies between 1 and 3 and represents a transition from curves with no
resonance to curves with a resonance at ωT . Theoretical curves were obtained
assuming a repulsive exciton potential of width 70 Åand strength U0 = 4
meV. Since different experimental behavior was observed from assorted sam-
ple areas, it was assumed that the discrepancy originated from distinctness
in the parameters that characterize the surface roughness, while the param-
eters that characterize the material were assumed invariant. The parameters
of CdS are h̄ωp = 0.29396eV , ε∞ = 9.1, M = 0.94m, h̄ν = 0.124meV , and
h̄ωT = 2.55225eV was obtained from the best global fitting. The correlation
distances were assumed equal Lr = Lf = Lrf = 0.5µm and the amplitudes
δr, δf , and κrf were fitted to each experimental curve. For example, curve 4
was obtained using the following set of parameters; δr = 17.8 Å, δf = 26.2 Å,
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Fig. 26. Angular dependence of the dimensionless cross sections (a) dσss/dΩ and (b)
dσpp/dΩ for ZnSe calculated with the parameters of Fig. 25, except for the surface
potential U0 = 1 meV. THe frequency is fixed at ω = ωL, the cross correlation at
krf = 1 and different angles of incidence θi = 0, 20, 40 degrees are considered. Taken
from Ref. [64].

and krf = 0.915. In all four curves the agreement found between theory and
experiment was excellent.

Theories similar to the one outlined above have been applied to other excitonic
systems with rough surfaces. For example, in Ref. [126] it was used to study
the scattering of light by nonlocal semiconductor thin films deposited above
metallic substrates. The scattering cross section displayed a series of peaks
due to the resonant coupling into the guided wave modes of the film.

Alternative simplified calculations for slightly rough surfaces have been per-
formed by generalizing the Rayleigh-Fano method, incorporating into it the
two transverse modes and the longitudinal mode that may be excited within
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Fig. 27. Comparisons between theorical and measured dimensionless cross section,
dσpp/dΩ. In (a) we show the experimental data of CdS taken from Ref. [62], which
correspond to light incident at an angle θi = 14o and scattered at an angle θ′ = 4◦

from different areas of the same sample surface. The hexagonal ~c axis lies along the
surface. Panel (b) displays the cross section calculated for an exponential excitonic
potential. The parameters of the rough surface and the fluctuations of the surface
potential are: δr = 5.05 Å, δf = 13.35 Å (η = 0.38), krf = 0.39 Å (curve 1);
δr = 10.45 Å, δf = 21.55 Å (η = 0.34), krf = 0.917 Å (curve 2); δr = 15.1
Å, δf = 26.05 Å (η = 0.27), krf = 0.931 Å (curve 3); δr = 17.8 Å, δf = 26.2
Å (η = 0.19), krf = 0.915 Å (curve 4); and Lr = Lf = Lrf = 0.5 µm. Taken from
Ref. [64].

the semiconductor. This method was employed in Ref. [127], where the rough-
ness mediated coupling of a P polarized wave incident on a surface of CdS to
the surface exciton-polaritons was shown to manifest itself as resonant struc-
tures in the specular and the diffuse scattered light. Non-locality diminishes
the size of these structures, and as usual, the Pekar ABC yields the largest
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nonlocal effect.
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11 Microscopic theory of optical properties

Since the macroscopic approach of Pekar [4] to the optical properties of non-
local excitonic semiconductors, several developments have emerged. Most of
them introduce ABC’s in order to determine the reflected and transmitted am-
plitudes of the electromagnetic fields. However, microscopic theories [4] which
do not require the concept of ABC’s have appeared recently in the literature.

Consider a two band system and let Ψ(~re, ~rh) be the off-diagonal part of the
density matrix in the position respresentation[128], commonly designated as

the electron-hole transition amplitude. Let ~d(~ρ) be the dipole matrix element
between the two bands corresponding to a separation ~ρ = ~re−~rh between the
electron (at ~re) and the hole (at ~rh). Then, the polarization may be written
as [4]

~P (~r) =
∫
d3ρ ~d∗(~ρ)Ψ(~re, ~rh), (156)

where ~r = ~re + ~rh. The electron-hole transition amplitude obeys the two-
particle effective mass Schrödinger equation[4]

[
ih̄
∂

∂t
− Eg +

h̄2

2me

∇2
e +

h̄2

2mh

∇2
h + VC

]
Ψ(~re, ~rh, t) = (157)

−~d(~ρ) · ~E(~r, t),

with Eg being the energy gap between valence and conduction bands, −VC
the Coulomb interaction potential between electrons and holes, and ~E the ex-
ternal electric field. Although the equation for Ψ is translationally invariant,
the boundary conditions (Ψ = 0 at the surface) introduce the geometry of the
system into the problem. In a slab geometry where the surfaces are perpendic-
ular to the z-direction and parallel to the x−y plane, and the electromagnetic
field propagates along the z-direction as a plane wave, it is useful to take the
in-plane two dimensional Fourier transform of Ψ,

Ψ( ~K; ze, zh) =
∫
d2Rei

~K·~RΨ(~re, ~rh), (158)

where we have written ~re = (~Re, ze), ~rh = (~Rh, zh), in terms of the projections

parallel to the surface ~Re and ~Rh and the normal to the surface components
ze, zh, we defined ~R = ~Re − ~Rh, and ~K is the in-plane wavevector. In Eq.
(158) it has further been assumed that the wavefunction is independent of the
center of mass position along the x − y plane, i.e., there is no center-of-mass
motion along x− y. Because of the translational and rotational invariance of
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the x − y plane, Ψ depends only on the modulus of ~K. A two-dimensional
Fourier transform of the Schrödinger equation yields

[
Eg + iγ +

h̄2

2µ
K2 − h̄2

2me

∂2

∂z2
e

− h̄2

2me

∂2

∂z2
h

]
Ψ(K; ze, zh) (159)

− 1

(2π)2

∞∫

0

dK ′K ′VC( ~K, ~K ′, |ze − zh|)Ψ(K ′; ze, zh)

−~d · ~E(z, t)δ(ze − zh) = ih̄
∂

∂t
Ψ(K; ze, zh),

where µ is the effective mass. This equation has also been generalized for
the case of anisotropic crystals subject to strain in Ref. [4]. The transformed
Coulomb matrix element is

VC( ~K, ~K ′, |ze − zh|) =
e2

2ε∞

2π∫

0

dφ
e−|

~K− ~K′||ze−zh|

| ~K − ~K ′|
. (160)

Here, φ is the angle between ~K and ~K ′ so that | ~K− ~K ′| =
√
K2 + (k′)2 −KK ′ cosφ.

The electromagnetic field is determined by Maxwell equations, which for trans-
verse fields travelling in the z direction yield [129]

ε∞
c

∂

∂t
E(z, t) = − ∂

∂z
B(z, t)− 4π

c

∂

∂t
P (z, t), (161)

1

c

∂

∂t
B(z, t) = − ∂

∂z
E(z, t). (162)

The electromagnetic field is coupled through the source term in Eq. (161)
to the polarization given by Eq. (156). Since no analytical solution may be
obtained for the coupled time dependent Schrödinger and Maxwell equations,
numerical solutions have been pursued [4].

For comparative purposes we consider the phenomenological work of Ref. [130],
which studies the optical response of surfaces and slabs in terms of the non-
local bulk dielectric function, presumably without introducing ABC’s. The
reflection amplitude is calculated by solving the wave equation assuming the
response within the slab is given by the same non-local response as that of
a homogeneous infinite fictitious system with a singular source at the posi-
tions occupied by the surfaces of the slab, and whose strength is obtained
by matching the resulting fields within the slab to the fields outside of the
semiconductor by applying Maxwell’s boundary conditions [86].
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Fig. 28. Calculated transmission T for a GaAs film of thickness L = 10aB within
a two band model. In panel (a) we present results of the calculations using the
microscopic theory of Ref. [4], in panel (b) the calculations were done applying the
phenomenological approach of Ref. [130], and in panel (c) the curves were obtained
[131] using the Ting, Frankel, Birman ABC’s. The detuning is relative to bulk semi-
conductor band-gap egergy Eg in units of the three dimensional exciton Rydberg
energy EB. Solid lines correspond to the dipole strength d = 5 Å of GaAs. The
dotted lines in panels (b) and (c) correspond to a larger value d = 10 Å. Taken from
Ref. [132].

In Fig. 28 we display the calculated transmission spectra of a GaAs film [132]
calculated for a two band model with the microscopic and the phenomeno-
logical models described above, and with the ABC’s of of Ting, Frankel, and
Birman [85] (TFB). The microscopic calculation shows a series of peaks (la-
beled n = 1, 2, . . .) corresponding to the quantization of the 1-s center-of-mass
(COM) motion along z; for a sample of thickness L, the corresponding kinetic
energies are approximately Kn = h̄

2M
[ π
L

]n2. The phenomenological results show
only the n = 1 peak, of which the TFB results show only a very small replica.
On the other hand, a calculation employing Pekar’s ABC’s has s better agree-
ment with the microscopic results [132].
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Fig. 29. Experimental absorption (a) and transmitance (b) of a high quality GaAs
film of thickness 0.25 µm, and transmitance (c) calculated with the microscopic
theory including light and heavy holes. Taken from Ref. [132].

Fig. 29 shows experimental results for GaAs films. The transmitance and ab-
sortance display non Lorentzian excitonic lines, with an asymmetric heavy
hole (HH) transition at 1.5132 eV, and a light hole (LH) transition at 1.5105
eV that exhibits a fine structure: it is split into two components, and it is fol-
lowed by secondary peaks of smaller magnitude at higher energy. Microscopic
theoretical calculations [132] were performed including transitions from both
light and heavy hole bands to the electron bands and employing parameters
corresponding to GaAs. The calculated spectrum (Fig. 29) agrees remarkably
well with experiment. The characteristic splitting of the light hole (LH) exci-
ton resonance and the asymmetric line shape of the heavy hole (HH) exciton
are well reproduced. These features are explained in terms of the interplay of
polaritonic effects and quantization of the COM motion. Calculations repro-
duce also the secondary peaks. In contrast, when the approach of Ref. [130]
is used, results show that neither reproduce the characteristic features of HH
and LH excitonic line shapes nor the COM replicas. The spectrum calculated
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using the TFB formalism displays the characteristic double peak structure of
the LH exciton line, but the HH line shape remains symmetrical and no COM
replicas are obtained [132].
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12 Concluding remarks

Our aim has been to bring forth the importance of the optical properties of
excitonic semiconductors. We have provided a review of the excitations of exci-
ton polaritons at surfaces, films, layered systems, superlattices, microcavities
and small particles. In the first part of the report we have shown solutions
of Maxwell wave equation within the nonlocal dielectric theory. Spatially dis-
persive or nonlocal media allow the propagation of excitonic waves beyond
the usual light waves. Consequently, Maxwell boundary conditions are insuf-
ficient to determine all of the electromagnetic field amplitudes in abruptly
terminated finite media, and additional boundary conditions (ABC’s) are re-
quired to complement the electromagnetic boundary conditions and produced
a closed system of equations. A generlized form of the ABC’s has been used
to demonstrate that the nonlocal theory together with an appropriate dead
layer free of excitons colse to the surface may explain several reflectance ex-
periments.

It is well established that the properties of semiconductor surfaces may be
modified by intense illumination, electronic or ionic bombardment, heating,
doping or applying a bias. As a consequence, excitons may be repelled by or
trapped at the surface, as has been confirmed experimentally. The interaction
of excitons with the surface may be described by a continuous potential. An
approach beyond that of the classical nonlocal theory have been employed
to solve the dynamical equations of motion for the exciton coupled to the
electromagnetic equations. Theory for both semiinfinite media and films show
that appropriate surface potential wells yield entrapped exciton states as ex-
perimentally observed. The optical contribution of entrapped states may be
enhanced using novel surface sensitive spectroscopies beyond the usual re-
flectance spectroscopy, such as reflectometry at 45◦. In the former technique
damping effects preclude the observation of entrapped exciton states. In con-
trast, as discussed in Sec. 7, the latter spectroscopy is highly sensitive and
may discern the entrapped states.

Studies of optical properties of excitonic films and multilayered systems have
been done using a transfer matrix approach. The transfer matrix can be ap-
plied together with a multistep approach in the case where the interaction of
excitons with the surfaces is modeled by continuous potentials. The transfer
matrix was also used to the study of superlattices and microcavities. In partic-
ular, the method was proven to be useful to calculate collective normal modes
in periodic superlattices.

Small particles with spherical and cylindrical geometries were studied by ap-
plying a non-local extension of Mie theory. The extinction coefficients display
the excitonic resonances of the small particle.
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Excitonic effects at non-ideal surfaces have been discussed in the context of
rough surfaces. For small roughness with a large correlation length an ex-
tension of the Rayleigh-Fano method may be applied, expanding the fields to
first order on the roughness height. The calculated scattering cross section was
very successfully fitted to experimental spectra taken at different regions of a
CdS surface, using only few parameters that characterize locally the surface
roughness and the near surface defects.

Finally, we have included a microscopic theory of the calculations of the optical
response. The theory was formulated within a linear response approach using
a four band model. The transmissivity of very thin films displays a series of
peaks at the excitonic transition and at frequencies that correspond to the
quantization of the motion of the excitonic center of mass, and the theory has
a very good agreement with experiment.
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