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Abstract

We analize the response of a single anharmonic diatomic molecule
to a monochromatic time dependent electric field ~Eω(t) and evaluate
the temporal evolution of the dipole moment, phase space trajectories
and several transition probabilities as a function of the intensity of the
field. We define deformed boson operators A† = f(n̂)a†, A = af(n̂) in
terms of the usual harmonic oscillator creation and annihilation opera-
tors a, a†, n̂ = a†a and choose the number operator function f(n̂) such
that the energy spectrum of a harmonic oscillator-type Hamiltonian
written in terms of the deformed operators yield an energy spectra
similar to that of a Morse potential.

1 Theory

Much work has been devoted to the study of the optical linear and nonlin-
ear response of harmonic systems to time dependent electric and magnetic
fields either with classical [1] or quantum mechanical treatments [2, 3]. Laser
pulses with well controlled temporal characteristics of amplitude and fre-
quency have a high potential for selective manipulation of the internal state
of atoms and molecules [4, 5, 6]. Cooling techniques have allowed the trap-
ping and manipulation of atoms by optical means, however, fluctuations of
the electromagnetic fields used to trap or to modify the quantum state lead
to decoherence in ion traps and limits the trap stability[7]. A study involving
multiple photon excitation for a linearly driven anharmonic oscillator using
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classical and quantum dynamics showed that the anharmonic nature of the
Morse potential reduces de coherence of the quantum excitation process after
the absorption of a few quanta[8]. In a recent work we analyzed the dipole
moment nonlinearly induced by a space and time dependent field acting on
a harmonic molecule; there, the origin of the nonlinearity is the quadrupo-
lar coupling between the system and the field. The algebraic nature of the
Hamiltonian is such that it was possible to obtain an exact solution to the
problem in terms of functions which fulfill a set of nonlinear, coupled, first
order differential equations which were solved numerically. For small field
amplitudes our results conform with those of perturbation theory however,
at high enough fields they differ significantly from the power law behavior
predicted by perturbation theory. Whenever the driving frequency is close to
a subharmonic of the resonance frequency, the high field signal is dominated
by its n-th harmonic component [9].

In this work we generalize the algebraic method used in the harmonic
case and apply it to an anharmonic system in order to study the effects due
to the asymmetry of the potential and the consequences of having a finite
number of bound states.

2 Algebraic Hamiltonian for the Morse Os-

cillator

A deformed oscillator is a non-harmonic system characterized by a Hamilto-
nian of the harmonic oscillator form,

HD =
h̄Ω

2

(

A†A + AA†
)

, (1)

with a specific frequency Ω and deformed boson creation and anihilation

operators [10]

A = af(n̂) = f(n̂ + 1)a, A† = f(n̂)a† = a†f(n̂ + 1), (2)

which differ from the corresponding harmonic operators a† and a through an
excitation level dependent deformation f(n̂), where n̂ = a†a is the harmonic
number operator. The function f fixes the nonlinearity of the system. As
[a, a†] = 1, the deformed operators obey the commutation relation

[A, A†] = (n̂ + 1)f 2(n̂ + 1) − n̂f 2(n̂). (3)
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Thus, the Hamiltonian may be written as

HD =
h̄Ω

2

(

n̂f 2(n̂) + (n̂ + 1)f 2(n̂ + 1)
)

. (4)

Notice that the eigenfunctions |n〉 of the harmonic oscillator are also eigen-
functions of the deformed oscillator. By choosing the deformation function
f(n̂) such that

f 2(n̂) = 1 − χn̂, (5)

and choosing the anharmonicity parameter χ = 1/(2N + 1) with integer N ,
the Hamiltonian becomes

HD = h̄Ω
(

n̂ + 1/2 − χ(n̂ + 1/2)2 − χ/4
)

, (6)

whose spectrum differs only by a constant from the spectrum

EM = h̄Ω
(

n +
1

2

)

− h̄Ω

2N + 1

(

n +
1

2

)2

(7)

of the Morse potential [11] with N + 1 bound states corresponding to the
integers 0 ≤ n ≤ N . The Hamiltonian (6) contains an harmonic term plus
a non linear contribution quadratic in the number operator, as well as an
unimportant energy shift.

Substituting Eq. 5 into (2) we obtain the commutators

[A, A†] = 1 − (2n̂ + 1)χ, [n̂, A] = −A, [n̂, A†] = A†, (8)

which approach the harmonic oscillator commutation relations as the number
of bound states supported by the potential increases.

In the following we will employ Eq. (6) as an algebraic Hamiltonian that
describes a Morse-like oscillator, provided we constrain the Hilbert space to
that spanned by the N + 1 states |0〉 . . . |N〉. As the Morse oscillator would
be close to dissociation whenever n ≈ N and our algebraic Hamiltonian (6)
has only discreet eigenstates, our approach is restricted to processes in which
only low lying states n � N participate.

3 Interaction with a driving field

We now analyze the response of the deformed oscillator to a time dependent
potential. This kind of interaction is present in various physical situations,
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for instance, in a head on collision between an atom and a diatom, or when
a molecule is driven by an oscillating classical electric field E(t). We con-
centrate on the later case and study the response of a single polar molecule
modeled by a Morse-like deformed oscillator dipolarly coupled to a time de-
pendent field E(t). To lowest order, the interaction potential is given by

V (t) = −qxE(t), (9)

where q is the dynamic charge, and x is the relative coordinate measured from
its equilibrium position. For simplicity, we have assumed that the system is
one dimensional (x and E point in the same direction) and neglected the
transverse nature of the electromagnetic field and any magnetic effects.

By identifying the number states |n〉 with the Morse eigenfunctions φn(x)
and comparing the matrix elements [13] 〈φn+α|x|φn〉 and 〈φn+α|p|φn〉 of the
position x and the momentum p operators with those of the deformed boson
operators 〈n + α|(A†)α|n〉 and 〈n−α|Aα|n〉 we may obtain expressions for x
and p in terms of n̂, A and A†,

x '
√

h̄

2mΩ

(

f00 + f10A
† + Af01 + f20(A

†)2 + A2f02 + . . .
)

, (10)

p ' i

√

h̄mΩ

2

(

g10A
† + Ag01 + g20(A

†)2 + A2g02 + . . .
)

, (11)

where we only show terms with up to two boson excitations, i.e., of order A2

and (A†)2. The coefficients fij, gij, are functions of the excitation number
operator n̂ and are given by [13]

f00 =
√

k

[

f0 + ln

(

(k − 2)(k − n̂ − 1)

(k − 1 − 2n̂)(k − 2n̂)

)

(1 − δn̂,0)

]

, (12)

f10 = f01 =

√

k − 1

k

(

1 +
n̂

k − n̂

)

, (13)

f20 = f02 =
k − 1

2k
√

k

(

−1

(1 − (n̂ − 1)/k)(1 − n̂/k)

)

, (14)

g10 = −g01 =

√

k − 1

k

(

k − 2n̂

k − n̂

)

, (15)
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g20 = −g02 = −k − 1

k
√

k

(

k − (2n̂ − 1)

k(1 − (n̂ − 1)/k)(1 − n̂/k)

)

, (16)

and where

f0 = ln k −




k−2
∑

p=1

1

p
− γ



 , (17)

with

γ = lim
m→∞





m
∑

p=1

1

p
− ln m



 = 0.577216 (18)

the Euler constant [14] and where k = 2N + 1 = 1/χ is Child’s parameter.
The relative importance of one, two and more boson excitations in Eqs. (10)
and (11) depend on the number of bound states N and on the excitation
number n. For the parameters employed below, we have verified that the
terms we keep are the dominant ones.

4 Response to a driving field

To simplify the presentation of our algebraic method, in a first approximation
we calculate the response to a time dependent field by further simplifying
Eq. (10), dropping the nonlinear two boson excitations, and keeping only
constant and linear terms,

x =

√

h̄

2mΩ

(

f00 + f10A
† + Af10

)

, (19)

p = i

√

h̄mΩ

2

(

g10A
† − Ag10

)

, (20)

In order to find the temporal evolution of the system, we write the time
evolution operator in a product form U(t) = U0(t)UI(t), where

U0(t) = exp
(

− i

h̄
HDt

)

. (21)

is the unperturbed evolution generated by the deformed Hamiltonian (6) and
the evolution operator in the interaction picture UI(t) obeys the differential
equation

ih̄∂tUI(t) = (U0(t)
†V (t)U0(t))UI(t) ≡ HI(t)UI(t), (22)
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with the initial condition UI(t0) = 1. The reference time t0 is chosen so that
the interaction is null or insignificant for previous times t < t0.

To construct the operator HI(t) we must first transform the interaction
(9) with the unperturbed evolution. To that end, we consider the transfor-
mations

A(t) = U †
0(t)AU0(t) = U †

0(t)aU0(T )f(n̂)

= e−iΩt(1−2χ(n̂+1))af(n̂) = e−iΩt(1−2χ(n̂+1))A, (23)

A†(t) = U †
0 (t)A†U0(t) = f(n̂)U †

0(t)a
†U0(t)

= f(n̂)a†eiΩt(1−2χ(n̂+1)) = A†eiΩt(1−2χ(n̂+1)). (24)

The interaction Hamiltonian is then

HI = −q

√

h̄

2mΩ

×
(

f00 + e−iΩt(1−2(n̂+1)χ)Af10 + f10A
†eiΩt(1−2(n̂+1)χ)

)

E(t). (25)

As the Hamiltonian contains the number operator in the exponential func-
tions as well as in f00 and f10, the set of operators appearing in HI does
not close under the operation of commutation. However, it would close if we
replace the number operator n̂ by some representative value ñ, leading to an
effective frequency Ωñ = Ω(1 − 2(ñ + 1)χ). The constant number ñ will be
defined later.

Within this approximation the interaction picture Hamiltonian becomes
a simple linear combination of the operators {a, a†, 1}

HI(t) = −q

√

h̄

2mΩ

(

f00(ñ) + f10(ñ)f(ñ)(e−iΩñ(t−t0)a + a†eiΩñ(t−t0))
)

E(t)

= φ0(t) + φ+(t)a† + φ−(t)a (26)

and consequently, the time evolution operator can be written exactly as a
product of exponentials [15, 16]:

UI = e−β+a†

e−β−ae−β0 (27)

with complex functions βi(t), i = 0, +,− such that

∂tβ+ =
i

h̄
φ+, (28)
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∂tβ− =
i

h̄
φ−, (29)

∂tβ0 =
i

h̄
(φ0 − φ−β+), (30)

with initial conditions βi(t0) = 0, as required by UI(t0) = 1.
We can choose an adiabatically switched monochromatic electric field

E(t) = E0 cos(ωt)eηt with a small switching rate η, in which case we can
integrate analytically the differential equations and obtain

β+ =

√

h̄

2mΩ

q

2h̄
f10(ñ + 1)f(ñ + 1)eiΩñ(t−t0)

×
(

eiωt

ω + Ωñ − iη
− e−iωt

ω − Ωñ + iη

)

E0e
ηt, (31)

β− =

√

h̄

2mΩ

q

2h̄
f10(ñ + 1)f(ñ + 1)e−iΩñ(t−t0)

×
(

eiωt

ω − Ωñ − iη
− e−iωt

ω + Ωñ + iη

)

E0e
ηt. (32)

Transforming the operators a and a† with the time evolution operator in
the interaction picture (see Eq. 27), we obtain:

U †
I aUI = a − β+ (33)

U †
I a

†UI = a† + β−. (34)

From these, the coordinate operator x in the Heisenberg representation is:

x(t) =

√

h̄

2mΩ

(

f00 + f10fñ

(

e−iΩñt(a − β+) + (a† + β−)eiΩñt
))

, (35)

and the deformed dipole moment q〈n|x|n〉 = αE(t):

q〈x(t)〉 = q

√

h̄

2mΩ

(

f00 + f10fñ

[

−e−iΩñtβ+ + eiΩñtβ−

])

, (36)

substituting the expressions we got for the β±, fñ and taking the limit η → 0
we obtain the linear polarizability (for the deformed oscillator)

α(ω > 0) = f 2
10f

2
ñ

(

(
Ωñ

Ω
)

q2/m

Ω2
ñ − ω2

+ iπ
q2

m
δ(ω − Ωñ)

)

(37)

7



showing that the replacement of the number operator by a constant value ñ,
has as a consequence that the response of a deformed oscillator to an homo-
geneous field is similar to that of a harmonic oscillator with the difference
that the resonance frequency depends upon the excitation state and the in-
tensity of the response also depends upon the excitation state through the
parameters fñ and f10. In the large N limit, the anharmonicity parameter
χ → 0, fñ → 1, f10 → 1 and this expression reduces to that of the harmonic
oscillator, however, for a non negligible value of the anharmonicity parameter
or a large ñ the correction term may be of importance.

Notice that we could have chosen a different temporal dependence for
the electric field, the applicability of the method we have employed does not
depend upon this choice.

Consider now the expansion of the coordinate (see Eq. 10) keeping up to
second order terms in the operators A, A†. The interaction potential for an
homogeneous field is given by Eq. 9 so that the Hamiltonian in the interaction
picture can now be written in the form:

HI(t) =
∑

0≤i+j≤2

φija
†i

aj ≡
6
∑

l=1

flXl (38)

where we have replaced the number operator by a number, and we have
chosen the following order for the operators:

X1 ≡ a†a, X2 ≡ a†2 , X3 ≡ a†, X4 ≡ a, X5 ≡ a2, X6 ≡ 1.

The functions fl are given by:

f1 = 0

f2 = −qf 2
ñ

√

h̄

2mΩ
f20E(r0, t)e

2iΩñt

f3 = −qfñf10

√

h̄

2mΩ
E(r0, t)e

iΩñt

f4 = −qfñf10

√

h̄

2mΩ
E(r0, t)e

−iΩñt

f5 = −qf 2
ñ

√

h̄

2mΩ
f20E(r0, t)e

−2iΩñt

f6 = −q

√

h̄

2mΩ
f00E(r0, t)
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notice that the coefficients responsible of processes of two quanta (f2 and
f5) come from the second order terms in the expansion of the coordinate so
that, even for a homogeneous field, the Morse potential gives rise to second
harmonic generation.

The relative of importance of the different terms in the expansions for the
coordinate and the momentum depend upon the excitation number ñ. For
a fixed value of the Child parameter k, f10 and f20 vary slowly as functions
of ñ while f00 increases rapidly as ñ approaches N ; g10 and g20 are also
slowly varying functions of ñ. For the numerical cases we have analyzed,
corresponding to systems with N = 15, N = 30 and N = 50 the relations
|f00| > |f01| > |f02| and |g10| > |g20| are fulfilled. Thus we have disregarded
higher than quadratic terms in f20.

The set of operators appearing in HI forms a finite Lie algebra so that
the time evolution operator in the interaction picture can be written in a
product form:

UI(t) = e−α1(t)a†ae−α2(t)a†2

e−α3(t)a†

e−α4(t)ae−α5(t)a2

e−α6(t) (39)

with the time dependent, complex functions αn fulfilling a set of coupled, first
order, nonlinear, differential equations which is obtained after substitution
of Eq 39 into Eq. 22 [9]. These equations are solved numerically and the
temporal evolution of any operator can then be calculated. In particular, the
temporal evolution of the coordinate is given by:

x(t) =

√

h̄

2mΩ
U †

I U
†
0

(

f00 + f10A
† + Af01 + f20(A

†)2 + A2f02

)

U0UI (40)

applying the transformations

U †
I U

†
0AU0UI = fñe−iΩñte−α1(a(1 − 4α2α5) − 2α2a

† − (α3 + 2α2α4))

≡ t1a + t2a
† + t3 (41)

U †
I U

†
0A

†UIU0 = fñeiΩñteα1(2α5a + a† + α4)

≡ t4a + t5a
† + t6. (42)

and taking the average value between number eigenstates we get:

〈n|x(t)|n〉 =

√

h̄

2mΩ
(f00 + f10(t3 + t6)

+ 2f20((t1t2 + t4t5)n + (t1t2 + t4t5 + t23 + t26))). (43)
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5 Transition probabilities

Once we have the explicit form for the time evolution operator, we can eval-
uate the transition probability from an initial state n to a final state n′ of
the oscillator

Pn,n′(t) = |An,n′(t)|2 = |〈n′|UI(t)|n〉|2. (44)

To do that, we substitute the explicit form of the time evolution operator
UI(t) (see Eq. 39)

An,n′ = e−α6e−α1n′〈n′|e−α2a†2

e−α3a†

e−α4ae−α5a2 |n〉. (45)

Expanding the exponentials e−α4ae−α5a2

and acting upon the state |n〉, we
get two finite summations

e−α4ae−α5a2 |n〉 = e−α4a

[n
2
]

∑

k=0

(−α5)
k

k!

√

n!

(n − 2k)!
|n − 2k〉

=

[n
2
]

∑

k=0

(−α5)
k

k!

n−2k
∑

l=0

(−α4)
l

l!

√

n!

(n − 2k − l)!
|n − 2k − l〉.

The other two exponentials are expanded and applyed to the final state 〈n′|

〈n′|e−α2a†2

e−α3a†

=

[n′

2
]

∑

p=0

(−α2)
p

p!

n′−2p
∑

q=0

(−α3)
q

q!

√

n′!

(n′ − 2p − q)!
〈n′ − 2p − q|

so that, the final expression for the probability amplitude An,n′ is:

An,n′ = e−α6−α1n′ ∑[n
2
]

k=0
(−α5)k

k!

√

n!
(n−2k)!

∑n−2k
l=0

(−α4)l

l!

∑[n′

2
]

p=0
(−α2)p

p!

×∑n′−2p
q=0

(−α3)q

q!
δn−2k−l,n′−2p−q (46)

with all the summations finite.

6 Numerical results

For the numerical evaluation of the response we choose systems with anhar-
monicity parameters χ = 0.032, χ = .016 and χ = .0099 corresponding to
N = 15, N = 30 and N = 50 respectively and set the constant number ñ as
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the initial state of the system. To produce Fig. 1 we choose a small switching
rate η = 0.0002 and an initial time |t0| � 1/η such that eηt0 < 10−5.

In Fig. 1 we show the last 10 periods of the temporal evolution of the
dipole moment as a function of time for N = 15 with a homogeneous field and
E0 = .25E , where E=h̄Ω/q` is the field that would produce an appreciable
energy change, of the order of the vibration energy quantum when a charge
q is displaced a distance of the order of a typical vibration amplitude ` =
√

h̄/mΩ. We set ω = .24Ω, so that nonlinear processes corresponding to

the fourth harmonic are resonant. Using the linear expression (see Eq.37)
the system responds with the forcing frequency ω and the amplitude of the
oscillations is symmetric with respect to the origin (full line). Using the
numerical solution given by Eq. 43 where non linear terms in the expansion
of the coordinate have been kept, we see that the deformed system also
responds with the forcing frequency but the amplitude of the vibrations is
not symmetrical with respect to the origin due to the asymmetry of the Morse
potential.

In figure 2 we show one period of the phase space trajectory 〈x〉 vs 〈p〉 for
the deformed oscillator with N = 15, ni = 0 and several values for the inten-
sity of the field. The innermost trajectory corresponds to a small intensity
E0 = .25E , here the trajectory resembles that of a harmonic oscillator, the
next one corresponds to E0 = .5E and the non linear terms begin to play a
role, the trajectory is no longer a ellipse but it acquires a slight deformation,
finally for E0 = .75E the deformation is much more significant.

In figure 3 we show the last period of the phase space trajectory 〈x〉 vs 〈p〉
for a deformed oscillator with N = 15 (full line), N = 30 (broken line) and
N = 50 (dashes) for a homogeneous field with η = 0.0002, E0 = .75E and
a forcing frequency ω = .34Ω0. Though the average phase space trajectory
reminds us of that of a harmonic oscillator, in particular the one with N = 50
which approaches an ellipse, it is clear that for this value of the intensity
of the field the non linear effects are evident since the trajectory for the
other two cases is not an ellipse, indicating the presence of more than one
frequency in the system’s response. As is to be expected, the relevance of
the nonlinearities increases with the anharmonicity parameter.

In order to study the transition probabilities, we considered a pulsed elec-
tric field of the form E(t) = E0e

−ηt2 cos ωt with η = 0.001 and the initial time
for integration such that e−ηt2

0 < 10−5. In figure 4 we show twenty periods
(from -10τ to 10τ , τ = 2π/ω) of the temporal evolution of the transitions
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t/τ

q〈
x
(t

)〉

0-2-4-6-8-10

0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

Figure 1: Dipole moment q〈x(t)〉 as a function of time in units of the period
τ = 2π/ω for an anharmonic molecule in the presence of a homogeneous
field in the linear (full line) and numerical (dashes) approaches discused in
the text. The parameters used are: η = 0.0002, N = 15, ω = 0.24 Ω0 and
E0 = .3E .
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〈x(t)〉

〈p
(t

)〉

1.210.80.60.40.20-0.2-0.4-0.6-0.8-1

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

Figure 2: Phase space trajectory 〈x(t)〉 vs 〈p(t)〉 for a field with frequency ω =
.24Ω0, swtching rate parameter η = 0.0002 and amplitudes E0 = .25E(broken
line), E0 = .5E (full line) and E0 = .75E (dashes) acting on a deformed
oscillator with N = 15, ni = 0.
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〈x(t)〉

〈p
(t

)〉

1.510.50-0.5-1-1.5

0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

Figure 3: Last period of the phase space trajectory 〈x(t)〉 vs 〈p(t)〉 for a
forcing field with E0 = .75E , ω = .34Ω0, η = 0.0002 and deformed oscillators
with ni = 0 and N = 50 (dashes ), N = 30 (broken line) and N = 15 (full
line).
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’prtp03.dat’
’prtp02.dat’
’prtp01.dat’

t/τ

P
0
→

n
,

n
=

1,
2,

3

1050-5-10

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

Figure 4: Transition probabilities (0-n) n = 1, 2, 3 as a function of time for
N = 30, E0 = E , ω = .49Ω.

(0-1,0-2 and 0-3) for a deformed oscillator with N = 30, and a field with
amplitude E0 = E and frequency ω = .49Ω.

As the pulse impinges upon the system, at about -4τ the transition from
the ground to the first excited state starts to build up oscillating with the
field’s frequency, later, at about -2τ the transition to the second excited state
begins to be noticeable and a little later that to the third excited state. At
all times, the (0-1) transition probability is larger than any other. Near
t = 0 when the pulse is at its peak, the transition (0-1) shows oscillations
with a larger frequency which indicates the effect of non linear terms in the
interaction. As the pulse abandons the interacting region, the oscillations
stop and the system arrives to a stationary state which is a combination of
the ground state and the first excited state with a small contribution from
higher states.

Finally, in Figs.5 and 6 we show the temporal evolution of the average
value of the displacement 〈x(t)〉 and the phase space 〈x(t)〉 vs 〈p(t)〉 the for a
deformed oscillator with N = 30 in an initial state ni = 0 forced by a pulsed
field characterized by an amplitude E0 = .75E , frequency ω = .34Ω0, and
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η = 0.001.
At the initial time when the oscillator is in the ground state, the average

value of the coordinate is a constant displaced from the origin due to the
function f00. As the pulse arrives, the system starts to oscillate around this
value with the field’s frequency, as the interaction takes place, the system
absorbs energy from the field, the amplitude of the oscillations increases and
after the pulse is gone, the system arrives to an excited state evidenced by
the small oscillations with a larger frequency than that of the forcing field.

Figure 6 shows the temporal evolution of the the phase space trajectory,
we see that as the pulse arrives and the system starts to absorb energy, the
average values of coordinate and momentum increase and the presence of
nonlinear effects can be discerned since the trajectories are not ellipses, after
the pulse is gone the average values of the momentum and the displacement
oscillate around the initial value with a small amplitude showing that the
system has arrived to an excited state.

7 Conclusions

The use of deformed oscillators with a deformation function adequate to
reproduce the energy spectrum of a Morse potential [17], has lead us to a
model for an anharmonic potential which supports a finite number of bound
states. By choosing a slightly different form for f(n̂), we could build an
alternative Hamiltonian with a spectrum corresponding to the Pöschl-Teller
Hamiltonian. The energy spectra of the deformed oscillator given by Eq. 6
has the same form as that of the Morse and the Pöschl-Teller potentials [11],
however as a function of the displacement coordinate these potentials are very
different. When one considers the expansion of the displacement coordinate
in terms of the deformed operators, for the Pöschl-Teller case the expansion
contains only odd powers of the creation and annihilation operators [12] while
for the Morse case even and odd terms are present [13].

We saw that the linear response has similar forms in the harmonic and
anharmonic cases with the difference that in the latter the resonance fre-
quency of the oscillator depends upon the excitation state. We have shown
that the non linear effects in the response of the anharmonic system increase
with the amplitude of the field and when the field’s frequency approaches the
resonance frequency of the oscillator. Since our method can be applied to
any temporal dependence, we analyzed the phase space trajectories for dif-
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Figure 5: Temporal evolution of the displacement for a deformed oscillator
with N = 30 initially in the ground state ni = 0 subjected to a pulse with
E0 = .75E , frequency ω = .34Ω0 and η = 0.001
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Figure 6: Temporal evolution of the phase space trajectories for a deformed
oscillator with N = 30, in the ground state subjected to a pulsed field with
E0 = .75E , ω = .34Ω0, and η = 0.001
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ferent temporal dependences of the field. When the number of bound states
supported by the potential is large, the phase space trajectories resemble
those of harmonic oscillators; for larger anharmonicity parameters (smaller
number of bound states) they are no longer ellipses showing an indication of
the relevance of the non linear effects.
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[3] D. Mundarain, J. L. Paz, J. Récamier, M. C. Salazar, A. J. Hernández,
Phys. Lett. A 273, 42-52 (2000).

[4] M. Babiker, W. L. Power and L. Allen, Phys. Rev. Lett. 73(9) 1239
(1994).

[5] V. I. Balykin, V. G. Minogin and V. S. Letokhov, Rep. Prog. Phys. 63,
1429-1510 (2000).

[6] K. Drese, M. Holthaus, Eur. Phys. J. D 5, 119-134 (1999).
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