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The energy flux within an opaque medium near an interface is not the sum of an

incident plus a reflected term, as there is a synergistic contribution to the time

averaged Poynting vector which involves simultaneously both the incident and

reflected fields. Therefore, the well known formula R + T = 1, where R is the

reflectance and T the transmittance, does not hold, and furthermore, R and T

loose their accepted meaning. We illustrate the perils of assuming energy flux

additivity by calculating the transmission and reflection spectrum of a film

over a substrate normally illuminated by incoherent light at frequencies in the

neighborhood of an optical resonance. We also show that the usual relation

between the scattering, absorption, and extinction cross sections for particles

immersed within a dissipative host have to be modified to account for the non

additivity.
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1. Introduction

Fizeau fringes, Newton rings, and the colors of butterfly’s wings, soap bubbles, duck’s

plumage, oil stains, etc., are familiar optical phenomena. They are due the interference

between several outgoing waves which emerge from thin films after having transversed their

widths several times, being subject to multiple reflections at their interfaces, and they illus-

trate the fact that the total outgoing energy flux is not simply the sum of the irradiances

of each multiply reflected wave. It is well known that the Poynting vector is quadratic in

the field amplitude, and therefore it is in general a non-additive quantity. However, there

is a common situation in which additivity of the energy flux is usually assumed and where

interference is seldomly discussed, namely, the reflection of light at an interface separating

two media. When light impinges on a surface, it is partially reflected and partially trans-

mitted. Energy conservation seems to imply that the power that is brought to the surface

by the incident wave is balanced by the power that is taken away by the reflected and the

transmitted waves. Thus, R + T + A = 1 where R and T are the ratios of the reflected and

transmitted power to the incident power per unit area of the interface and A corresponds

to the power absorbed by the interface itself, which may be disregarded for sharp, infinitely

thin interfaces, even if the bordering media are absorptive.1 Hidden in this statement is

the assumption that the Poynting vector at the interface may be divided into an incoming

contribution which is a property of the incident wave alone, as if no reflected wave were

present, and an outgoing contribution which corresponds to the reflected wave alone, as if

there were no incident wave. The possible interference between the incident and reflected

fields is therefore neglected in the calculation of the energy flux. In this paper we show that

although this is frequently correct, it is not so in general. Whenever the medium where the

incoming wave propagates is opaque, there is a contribution to the energy flux which arises

from both the the incident and reflected fields and which cannot be ascribed to any one of

them individually. A similar situation arises even within transparent materials whenever

the kinematical conditions are such that the incident and reflected waves are evanescent.

The effect that interference between incident and reflected waves has on the electric and

magnetic fields is very well known,2 and has an historical significance, as it was used to

establish that the electric and not the magnetic field is responsible for blackening photo-

graphic emulsions and for inducing fluorescence.3 However, we have not found any textbook

where its effect on the energy flux were discussed and it is only recently4 that it has been
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discussed in the literature within the context of the coupling of energy into a waveguide. In

standard books of Optics5–8 incident and reflected contributions to the energy density flux

are considered separately. In a typical optical experiment, light is produced by a distant

source and measured by a distant detector. Thus, it has to propagate through transparent

media within which additivity holds. However, it does not hold for propagation through

opaque films and assuming it does uncritically might lead to wrong and absurd results.

In this paper we discuss the conditions under which non-additivity manifests itself and

some of its consequences. In section 2 we calculate the reflectance of an opaque film illu-

minated by quasi-monochromatic incoherent light in order to illustrate the errors in which

we may incur by the nonchalant assumption of additivity. These errors and their origin are

analyzed in detail in section 3 where we study the propagation of energy near the surface of

an opaque medium illuminated by monochromatic waves. The case of quasi-monochromatic

partially coherent light is analyzed in detail in section 4. In section 5 we discuss the ex-

tinction, absorption, and scattering cross section of particles immersed within dissipative

media, and we show that the usual relation linking extinction to the sum of absorption plus

scattering has to be modified to account for the non additivity of the energy flux. Finally,

we devote section 6 to conclusions.

2. Reflectance of a film

As a simple example which yields unphysical results when non-additivity is ignored, we

consider the optical response of a film of thickness d as illustrated in Fig. 1. The film is

characterized by a dielectric function

ε2(ω) = 1 +
ω2

p

ω2
T − ω2 − iωγ

, (1)

with a single resonance at frequency ωT , a dissipation factor γ and a strength ω2
p = ω2

L−ω2
T ,

where ωL is the root of ε2(ω) when γ → 0. It has a complex refraction index n2(ω) =
√

ε2(ω)
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and lies over a transparent substrate with a constant real refraction index n3. Consider a

normally incident monochromatic wave of frequency ω which illuminates the system from

a transparent medium with a constant real refraction index n1. The reflection amplitude

r(ω), defined as the quotient between the incident and reflected fields at the front surface

(1-2) of the film, may be calculated as a sum of multiple reflected waves,9

r = r12 + t12r23t21 exp (2ik2d)
∞∑

�=1

[r21r23 exp (2ik2d)]�−1 , (2)

where

rij =
ni − nj

ni + nj

(3)

and

tij =
2ni

ni + nj
(4)

are the Fresnel reflection and transmission amplitudes10 corresponding to a single scattering

of light that reaches the interface (i− j) while moving from medium i towards the adjacent

medium j, and exp (ik2d) contains the change in the phase (exp (ik′
2d)) and in the amplitude

(exp (−k′′
2d)) of the electromagnetic wave due to a single one-way transversal of the film,

where k2 = k′
2 + ik′′

2 is the complex wavenumber,

k2 = n2
ω

c
. (5)

The first term in the RHS of Eq. (2) accounts for the field reflected from the front surface

of the film. The second term accounts for the field that is transmitted into the film, crosses

the film to and fro � = 1 . . .∞ times, being repeatedly reflected at its back and front, finally

being transmitted backwards into the first medium. The geometrical sum in Eq. (2) can be

readily performed9 and yields

r = r12 +
t12t21r23 exp (2ik2d)

1 − r21r23 exp (2ik2d)
. (6)
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Similarly, the transmission amplitude t(ω), defined as the quotient between the transmitted

field at the back surface (23) and the incident field at the front surface (12) of the film, is9

t =
t12t23 exp (ik2d)

1 − r21r23 exp (i2k2d)
. (7)

From Eqs. (6) and (7) we obtain the reflectance RM = |r|2 and transmittance TM =

(n3/n1)|t|2 of the film for monochromatic light, defined as the ratios of the reflected and

transmitted energy fluxes, respectively, to the incident energy flux.

Fig. 2 illustrates the typical behavior of the reflectance of an opaque film as obtained

from Eq. (6). Its width was chosen as d = λT /2, where λT = 2πc/ωT is the free space

wavelength at resonance. The reflectance is relatively low below the resonance frequency ωT

and after the longitudinal frequency ωL, while it is relatively high at resonance, where the

dielectric function is very large, and within the stop gap, between ωT and ωL, where ε2 is

negative and n2 imaginary. Furthermore, the reflectance shows a series of oscillations due

to the interference among the multiple reflected waves, which alternate between partially

constructive to partially destructive as the frequency is varied. These oscillations become

more closely spaced as the width of the film is increased.

We might expect that if the film is illuminated with incoherent instead of monochromatic

light, the interference ought to be washed away due to the introduction of randomness in the

phase. Assuming there is no fixed phase relation between the multiple reflected waves, we

perform a random phase approximation and obtain the reflectance by adding incoherently

the intensities of the multiply reflected waves, instead of adding their amplitudes. Thus, we

write the reflectance RI for incoherent illumination11 as

RI = R12 + T12R23T21 exp (−4k′′
2d)

∞∑
�=1

[R21R23 exp (−4k′′
2d)]

�−1
, (8)
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in analogy to Eq. (2), where

Rij = |rij|2 =
|ni − nj |2
|ni + nj |2 (9)

and

Tij = (n′
j/n

′
i)|tij|2 = 4

n′
j

n′
i

(n′
i)

2 + (n′′
i )

2

|ni + nj |2 (10)

are the reflectance and transmittance of the ij interface, defined in analogy to rij and tij

above but dividing wave intensities instead of amplitudes. Each term of the series (8) is

the incoherent counterpart of the corresponding term in the series (2). There is a factor

exp (−2k′′
2d) corresponding to each traversal of the film to account for the intensity decay

due to its opacity. Summing the ensuing geometrical series, we obtain

RI = R12 +
T12T21R23 exp (−4k′′

2d)

1 − R12R23 exp (−4k′′
2d)

. (11)

Similarly, we calculate the incoherent transmittance11

TI =
T12T23 exp (−2k′′

2d)

1 − R12R23 exp (−4k′′
2d)

. (12)

These expressions for RI and TI are analogous to Eqs. (6) and (7) for r and t, and may

be obtained by simply replacing rij → Rij , tij → Tij and exp (ik2d) → exp (−2k′′
2d). Fig.

2 shows that RI as given by Eq. (11) effectively removes the interference oscillations from

RM yielding the expected result, halfway between their maxima and minima. Thus, our

procedure of adding intensities instead of amplitudes seems reasonable for incoherent illu-

mination.

However, there are problems with Eq. (11) as becomes evident when thinner films are

considered. In Fig. 3 we show the coherent and incoherent reflectance calculated for a

similar but narrower film of width λT /10. Obviously, the incoherent reflectance displayed

in Fig. 3 is wrong as it violates the principle of energy conservation, which requires that
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for any passive media, the outgoing power should be smaller or equal than the incoming

power, the difference being accounted for by the power absorbed within the film. As the

absorptance is positive, RI and TI should obey

0 ≤ RI ≤ 1, 0 ≤ TI ≤ 1, 0 ≤ RI + TI ≤ 1. (13)

Eqs. (11) and (12) violate these conditions within the stop band.

It could be corrrectly argued11 that our naive derivation of Eqs. (11) and (12) is flawed,

as it must be obvious that the interference between the n-th multiply reflected contribution

to the reflected field (Eq. (2)) and the n + 1-th and n − 1-th contributions cannot be

washed away by incoherence effects if the film is too thin. In particular, it is unreasonable

to expect an incoherent calculation to yield the correct result for films much thiner than

a wavelength. We silently and uncritically assumed that the incoherent field has a small

bandwidth Δω � ω so that the frequency, n2, R21, R23, etc. are well defined quantities and

we can plot the incoherent response as a function of ω. However, we also assumed that Δω is

large enough so that the band encompasses many, or at the very least, one full interference-

originated oscillation, if coherent effects are to be washed away. It is impossible to satisfy

both requirements simultaneously for very thin films. Thus, it might not be surprising that

Eqs. (11) and (12) lead to wrong results.

Although pertinent, this criticism does not fully resolve the unphysical situation displayed

in Fig. 3. On one hand, even for very wide films it is always possible to find sets of

parameters for which RI , as given by Eq. (11), leads to unphysical results. For example,

Fig. 4 shows that RI > 1 within a narrow frequency range close to ωL for relatively wide

(d ≈ 10λT ) free-standing films (n1 = n3 = 1) if the dissipation factor is small enough

(γ ≈ 10−8ωT ). It also illustrates the strong dependence of the region where this unphysical

behavior manifests itself on the width of the film and on it’s dissipation factor. On the other
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hand, we could always conceive a hypothetical system in which instead of electromagnetic

waves or photons, classical particles are reflected with probability Rij and transmitted with

probability Tij whenever they reach the ij-th interface, and are absorbed with probability 2k′′
2

per unit length as they travel across the film. For this classical system, the total probability

of being reflected or transmitted would be given exactly12 by Eqs. (11) and (12). Thus, if

Eqs. (11) and (12) produce not only wrong, but also absurd results, it must be because their

ingredients, i.e., Rij and Tij are themselves unphysical. In particular, it can be easily shown

that if Rij and Tij were constrained by the usual conditions 0 ≤ Rij ≤ 1 and 0 ≤ Tij ≤ 1,

Rij +Tij = 1, and Rij = Rji, as would happen for transparent films, then RI and TI as given

by Eqs. (11) and (12) would obey the expected constraints (13); 0 ≤ RI , TI , RI +TI ≤ 1 for

transparent films, regardless of their thickness, even if they are so thin as to invalidate Eqs.

(11) and (12).

That the optical coefficients of opaque media are not so constrained is demonstrated

by Fig. 5, which shows the transmittance T21 of a single interface separating the opaque

medium 2 from vacuum, corresponding to illumination from within the opaque medium, as

calculated directly from Fresnel’s coefficients (Eq. (10)). For frequencies in the stop gap, T21

may exceed unity by several orders of magnitude, confirming that the usual interpretation

of T21 as the fraction of the incident power that is transmitted, or as the probability that a

photon is transmitted across the interface, is wrong when the incident medium is opaque.

We remark that T21 �= T12 unless both media are transparent.

3. Energy flux within opaque systems

To understand the meaning of R21 and T21 we calculate the energy flux within the opaque

film and close to its interface. We write the electric field for a monochromatic wave as the
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real part of E(z) exp(−iωt), with

E(z) = Ei exp (−ik2z) + Er exp (ik2z) (14)

where Ei is the amplitude of the incoming wave which propagates in the −z direction with

complex wavenumber k2. It is reflected at the (2-1) interface, situated for convenience at

z = 0, giving rise to a reflected wave of amplitude Er = r21Ei propagating in the z direction,

and C.C denotes the complex conjugate of the previous terms. The time averaged Poynting

vector, S(r) = (0, 0, Sz(z)) within the film is then

Sz(z) = −Ii(z) + Ir(z) + Iint(z), (15)

where Ii(z) = Ii exp (2k′′
2z) with Ii = (c/8π)n′

2|Ei|2 is the intensity of the incident wave,

which decays towards the surface due to the medium’s opacity, while Ir(z) = Ir exp (−2k′′
2z),

with Ir = (c/8π)n′
2|Er|2 = R21Ii and R21 = |r21|2, is the intensity of the reflected wave, which

decays away from the surface. However, Eq. (15) contains an additional interference term,

Iint(z) = −2
n′′

2

n′
2

Im (r21 exp (2ik′
2z)) Ii = −2

n′′
2

n′
2

[r′21 sin(2k′
2z) + r′′21 cos(2k′

2z)]Ii, (16)

which oscillates with z and which does not decay in either direction. This term has contri-

butions from both the incident and reflected waves and it originates in the products of the

incoming electric and outgoing magnetic fields, as well as in the product of the incoming

magnetic and the outgoing electric fields. As the Poynting vector is quadratic in the fields,

this interference term, arising from the cross products of incoming and outgoing fields, could

have been expected. Nevertheless, as it is proportional to the imaginary part of the index

of refraction, it is not present within transparent media. It may be for this reason that this

term is commonly disregarded in optics textbooks.

Notice that the term (16) is required to satisfy Poynting’s theorem, ∇ · S = −P, within

9



the dissipative medium, as the power P dissipated per unit volume

P(z) = ω
ε′′2
8π

|E(z)|2 (17)

contains an interference term

Pint(z) = 2PiRe [r21 exp (2ik′
2z)] , (18)

besides the power taken from the incident wave Pi(z) = Pi exp (2k′′
2z) and from the reflected

wave Pr(z) = Pr exp (−2k′′
2z), where Pr = R21Pi and Pi = (ωε′′2/8π)|Ei|2. Actually, it is

precisely this interference term the one responsible for the interference fringes observed in

Wiener’s experiments, which established in 1890 that electromagnetic fields interacted with

matter mainly through their electrical action.2

The Poynting vector corresponding to the wave transmitted to the transparent medium

is given by

Sz(z) = −It = − c

8π
n1|Et|2 = −T21Ii. (19)

Energy conservation requires Sz(z) to be continuous at the interface z = 0, which implies

that

T21 = 1 − R21 + 2
n′′

2

n′
2

r′′21, (20)

as may be simply verified by substituting Eqs. (3), (9), and (10). Thus, R21 +T21 �= 1 within

absorptive media. We remark that T21 �= T12 as n2 is complex (Eq. (10)) and that indeed

R12 + T12 = 1 since n1 is real.

It can be simply shown that a similar situation holds for non-normal incidence and for

both s and p polarizations and it is even present within transparent films whenever the

kinematic conditions are such that the field within them is evanescent. A very illustrative

case is that of the air or vacuum gap within two glass prisms in the geometry of frustrated
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total internal reflection (FTIR).13 Assuming the interfaces are parallel to the xy plane and

that the system is illuminated by a plane wave with xz as the plane of incidence with an

angle of incidence θ larger than the critical angle θc, the field that reaches the second prism

after being transmitted from the first prism into the vacuum carries no energy whatsoever

in the z direction; that is the origin of the phenomenon of total internal reflection. Similarly,

the evanescent field reflected by the second prism carries no energy along ±z by itself. Thus,

the interference term between the incident and reflected wave is responsible for all of the

energy transported across the gap and is responsible for the attenuation of the total reflection

when both prisms are close to each other. As in the previous case, the amplitude of the

interference term is independent of position across the gap. However, unlike the previous

case, k⊥ =
√

ω2/c2 − k2
‖ = iκ is purely imaginary, so that there are no oscillations such as

those in Eq. (16). Here, we wrote the wave-vector of the evanescent waves in the gap as

k± = (k‖, 0,±k⊥) where k‖ = n(ω/c) sin θ and n is the index of refraction of the prism.

Within the vacuum gap Sz is constant, while Sx has three contributions: an exponentially

decaying term due to the transmitted evanescent wave, a relatively small exponentially

increasing term due to the evanescent wave reflected by the second prism and a constant

interference term. Thus, the direction of S depends on z and rotates towards the surface

normal as we move from the first towards the second interface, where it reaches a finite

angle θg = tan−1(k‖|t|2/2κt′′), where t is the transmission amplitude of the evanescent wave

from vacuum into the glass. Curiously, for s polarization θg = θ.14 As θg �= 0, our analysis

above for a single plane wave is insufficient to account for the asymptotic value observed

in the lateral displacement of the transmitted rays in FTIR systems illuminated by finite

beams.14–18

Another example is the coupling of light into a waveguide from a nearby source localized
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within a transparent ambient. It has been shown recently4 that the evanescent part of

the field produced by the source is responsible for all of the energy carried away by the

waveguide, and that all of the injected energy is accounted for by a term similar to our

Eq. (16), describing the interference between the field produced by the source and the

field reflected by the waveguide. A final example is given by the propagation through an

amplifying layer,19–21 which far from saturation may be described by a complex index of

refraction, as in an absorbing medium, but changing the sign of its imaginary part.

As in the above systems the energy flux cannot be analyzed solely into an incoming and

an outgoing contribution, it is no longer necessary to balance the energy flux of the incident

wave with those of the reflected and transmitted waves. More energy may reach the surface

than that carried by the incident wave alone, and therefore, R and T are no longer bounded,

i.e., it is possible that R > 1 and T > 1, as exemplified for T21 by Fig. 5. Furthermore, R

and T can no longer be interpreted as the probability of reflecting or transmitting a photon.

Thus, our derivation of Eqs. (11) and (12) is not valid.

4. Partially Coherent Light

We have shown that additivity of the energy flux does not hold within opaque media, so

that R and T loose their usual meaning, invalidating our derivation of Eqs. (11) and (12).

Nevertheless, these equations seem to yield reasonable results for films that are not too

thin, as shown in Fig. 2. To explore their physical soundness, we study in more detail the

optical properties of a surface when illuminated from within an opaque medium by partially

coherent, quasi-monochromatic light. We model the incoming wave as the superposition of

a random succession of independent identical finite pulses with random phases and centered

at random times. As a given pulse is uncorrelated with the other pulses of the train, the

time autocorrelation function c(τ) = 〈E(t+ τ)E(t)〉 = βc1(τ) of the partially coherent wave
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is proportional to the autocorrelation c1(τ) of a single pulse. Here, β is the average number

of pulses per unit time and we denoted by 〈(. . .)〉 the time and ensemble average of any

quantity (. . .). Correspondingly, the correlation time τ0 is equal to the correlation time of a

single pulse, which we identify with its duration. We identify its spatial extension with the

longitudinal correlation length,

2L = vgτ0, (21)

where vg = (dk′
2/dω)−1 is the group velocity of the pulse.

The interference contribution (16) to the Poynting vector for monochromatic waves oscil-

lates as a function of z with a spatial period of a half a wavelength and with an amplitude

which is independent of the distance to the interface. However, it is also an oscillatory

function of ω with oscillations that become faster as we move away from the interface. As a

pulse has a finite bandwidth, we expect contributions with slightly different frequencies to

cancel each other at large enough distances. We verify this by calculating the total energy

E(z) =
∫

dt Sz(z, t) that crosses a unit area situated at position z after a single pulse with

field

E(z, t) =
∫ ∞

0
dω/(2π)A(ω)[exp (−ik2z) + r21 exp (ik2z)] exp (−iωt) + C.C. (22)

goes through it on its way to the surface (2-1) and back after being reflected. This can be

obtained by integrating Eq. (14) with a weight function |A(ω)|2.

For definitiveness we choose a Gaussian amplitude A(ω) = E0G(ω), where

G2(ω) =
1√

2πΔω
exp {[−(ω − ω0)

2/2Δω2]} (23)

is a normalized Gaussian function centered at ω0 and with a width Δω which we assume

much smaller than ω0. We approximate

k2(ω) ≈ k2(ω0) + (ω − ω0)
dk2

dω

∣∣∣∣∣
ω0

, (24)
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and assume that z is close enough to the interface, Δω
dk′′

2

dω
z � 1, so that although the pulse

is attenuated, its shape is almost undeformed. In this case we obtain14

E(z) = −Ei(z) + Er(z) + Eint(z) (25)

where Ei(z) = Ei exp (2k′′
2z) is the energy of the incident pulse, which decays towards the

surface due to the opacity, Er(z) = R21Ei exp (−2k′′
2z) is the energy of the reflected pulse,

which decays away from the surface, and

Eint = −2
n′′

2

n′
2

exp(−z2/2L2)[r′21 sin(2k′
2z) + r′′21 cos(2k′

2z)]Ei (26)

is the interference term. Here, we introduced the total energy Ei = cE2
0n

′
2/(4π2) that would

cross a unit area at z = 0 if there were no reflected wave, we identified τ0 with 1/Δω, and

we evaluate all frequency dependent terms at the central frequency ω0. We may recover the

energy flux Sz(z) in the partially coherent case simply by multiplying by the pulse rate β,

Sz(z) = βE(z). We note that Eq. (25) is similar to Eq. (15). However, the interference

term displays now an exponential decay with a characteristic length L equal to half of the

correlation length of the incident pulse.

The exponential decay of the interference term in Eq. (26) is easily understood by noticing

that the elapsed time between the passage through z of the incident pulse and the passage

of the reflected pulse is about Td ≈ 2z/vg as 2z is the distance to the surface and back.

Interference between the reflected and the incident wave is only possible if the leading edge

of a reflected pulse arrives before the trailing edge of the incident pulse has completely passed

through z, i.e., if the delay is smaller than the correlation time, Td < τ0 (Fig. 6). Thus, at

large enough distances from the interface, z ≥ L, there is no interference term, additivity

holds, and we may separate the energy flow into an incident Si(z) = Si exp (2k′′
2z) and a

reflected Sr(z) = Sr exp (−2k′′
2z) contribution. This allows us to introduce a pseudointerface
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with a given finite width w ≥ L and define its reflectance and transmittance as

R̃21 ≡ Sr(w)

Si(w)
= R21 exp (−4k′′

2w), (27)

and

T̃21 ≡ St(0)

Si(w)
= T21 exp (−2k′′

2w). (28)

As could be expected from the discussion above, it may be shown14 that the optical co-

efficients of the pseudo-interface do obey the constrains 0 ≤ R̃21 ≤ 1, 0 ≤ T̃21 ≤ 1, and

R̃21 + T̃21 + Ã21 = 1, where the absortance Ã21 of the pseudo-interface obeys 0 ≤ Ã21 ≤ 1.

Defining similar quantities for the interface (2-3) we can write a series analogous to (8),

but replacing the width d of the film by the distance d̃ = d − 2w between pseudointerfaces,

yielding

RI = R12 +
T̃12T̃21R̃23 exp (−4k′′

2 d̃)

1 − R̃12R̃23 exp (−4k′′
2 d̃)

(29)

and

TI =
T̃12T̃23 exp (−2k′′

2 d̃)

1 − R̃12R̃23 exp (−4k′′
2 d̃)

. (30)

It is easy to show that Eqs. (29) and (30) are exactly equivalent to (11) and (12), as if R21,

T21, etc. had their simple-minded meaning. However, our derivation is only valid for films

that are wide enough,

d ≥ 2L, (31)

so that the two pseudo-interfaces are non-overlapping and d̃ ≥ 0. Thus, the optical properties

of an opaque film calculated as in Sec. 2 for the case of completely incoherent illumination

are correct for the more realistic case of partially coherent light with a finite bandwidth,

provided that the film is wider than the longitudinal correlation distance. The conditions

d ≥ 2L = vg/Δω and Δω � ω0 can only be satisfied simultaneously in films such that

d � vg/ω0. Thus, the case of completely incoherent but quasi-monochromatic illumination
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is not realizable for very thin films. In this situation, the optical properties of the film have

to be calculated14 by averaging the full mono-chromatic result (6) and (7) with the spectral

weight of the field and we can not short-cut this procedure as in Sec. 2.

We remark that besides the interference discussed above between incident and reflected

waves within opaque media, there are additional well known effects due to interference

between multiply reflected waves, and these are present even for transparent films whenever

the delay T ′
d ≈ 2d/vg between the n-th and the n + 1-th multiply reflected pulses is smaller

than their correlation time, T ′
d < τ0. Therefore, it would be absent for films wider than half

a longitudinal correlation length d ≥ L. Notice that this condition is similar but slightly

less restrictive than the condition (31) pertaining to opaque films.

5. Extinction within dissipative media

In the previous sections we showed that the interference of the incident and reflected waves

close to an interface yields a finite contribution to the energy flow within opaque films.

Similar contributions are to be expected when an object placed within an absorbing medium

is illuminated: the interference of the incoming wave with the scattered waves might yield

an additional contribution to the energy flow, which should have to be properly accounted

for in order to understand the scattering, absorption and extinction cross sections of the

object.

The problem of scattering, absorption and extinction by particles in media with absorp-

tion was addressed many years ago.22–24 When the media is non absorbing, it is well known

that the extinction is due to the energy removed by absorption within the particle and by

scattering. The optical theorem shows that the extinction may be simply obtained from the

forward scattering amplitude, as only in the immediate neighborhood of the forward direc-

tion does interference between incident and scattered fields produce a finite contribution to
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the energy flow. The main questions that have to be addressed for the case of particles

embedded within absorbing media are the appropriate definition of the extinction and ab-

sorption cross sections, their calculation, and the validity or the correct generalization of the

optical theorem. One problem when defining extinction and absorption coefficients within

dissipative media is that the host contributes to both processes; there is a contribution from

the far fields as well as from the near fields, and there would also be a contribution in the

absence of the scatterer. Some definitions have been proposed22,23 in which the absorption

and scattering cross sections are identified by integrating the energy flux though conceptual

large integration surfaces that surround the particle and for which the far field approxima-

tion may be employed. However, the resulting coefficients depend on the rather arbitrary

size of the surface and are therefore not an intrinsic property of the scatterers. By calculating

numerically the near fields for the special case of spherical particles, the cross sections have

also been defined and calculated in terms of the energy flux through the actual boundary of

the particle.25,26 The various definitions do not agree among themselves within dissipative

hosts. In the following, we present an alternative approach to extinction, absorption and

scattering cross sections for a particle embedded in an absorbing medium. First we will use

two special simple cases in order to illustrate our main ideas. Afterwards, we will generalize

our results to the case of particles with arbitrary shape.

A. Thin film

Consider a system similar to that depicted in Fig 1, consisting of a thin film with an arbitrary

dielectric function ε2 and index of refraction n2 =
√

ε2 situated within an absorbing medium

with a complex index of refraction n1 = n3 = n = n′ + in′′ =
√

ε. The film plays the role

of a scatterer located at the origin and for simplicity we have considered a planar geometry

and we further assume that the width d is much smaller than the wavelength, d � λ, and
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perform the calculations below to linear order in d. In the next subsections we will relax

this assumptions. When normally illuminated by an incident field Ei(z) = Ei exp (ikz), with

k = nω/c, an electric current j = j0 + Δj is established, where j0 = −iω(ε − 1)Ei/4π is the

current density in the host and

Δj = −iω
ε2 − ε

4π
Ei (32)

is the change in the current density due to the presence of the scatterer. Acting on this

extra current with the Green’s operator Ĝ of the host, represented by the Green’s function27

G(z, z′) = i
exp (ik|z − z′|)

2k
, (33)

we obtain the scattered potentials A± = 4πĜΔj/c and fields

E±(z) = i
ω

c
A±(z) = s±Ei exp (±ikz), (34)

where we introduced the scattering amplitudes

s+ = s− = i
ωd

2nc
(ε2 − ε) (35)

in both the forward (+) and backward (-) directions, to lowest order in d/λ in the long

wavelength approximation. As the scattered fields are linear in d, the scattered intensity

Is = I+ + I− ≈ 0 up to linear order in d. The extra power absorbed per unit area by the

film may be obtained by integrating ReΔj · E∗
i ,

Ia ≈ ωd
ε′′2 − ε′′

8π
|Ei|2 =

ωd

n′c
(ε′′2 − ε′′)Ii, (36)

where Ii(z) = (c/8π)n′|Ei|2 exp (−2k′′z) is the incident intensity at z and Ii ≡ Ii(0). The

total transmitted intensity is

It(z) =
c

8π
n′|Ei(z) + E+(z)|2 ≈ (1 + 2s′+)Ii exp (−2k′′z) = Ii(z) − Ie(z), (z > 0) (37)
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from which we can identify the power

Ie(z) = −2s′+Ii exp (−2k′′z), (38)

extinguished from the incoming wave per unit area. One might then define scattering

σs/A = 0, (39)

absorption

σa/A =
Ia

Ii
=

ωd

n′c
(ε′′2 − ε′′), (40)

and extinction

σe/A = Ie(0)/Ii = −2s′+ (41)

coefficients per unit area A. Eq. (41) is the 1D formulation of the optical theorem.28

However, the naive expectation that extinction is accounted for by scattering and absorption,

σe = σs + σa (wrong) (42)

does not hold whenever the host is opaque, as

(σe − σs − σa)/A =
ω

c
d

[
Im

(
ε2 − ε

n

)
− ε′′2 − ε′′

n′

]
�= 0, (43)

unless n′′ = 0. The reason for this discrepancy with the usual scattering result within

transparent media is that the total incoming intensity

It(z) =
c

8π
n′|Ei(z) + E−(z)|2 ≈

{
exp (−2k′′z) + 2

n′′

n′ Im[s− exp (−2ik′z)]

}
Ii

= Ii(z) − Iint(z), (z < 0) (44)

has an additional oscillating contribution

Iint(z) = −2
n′′

n′ Im(s− exp (−2ik′z))Ii (45)
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to the energy flow, due to the interference between the backscattered wave and the incident

wave. Defining an interference cross section

σint/A = Iint(0)/Ii = −2
n′′

n′ s
′′
−, (46)

we may account for the additional contribution to the incoming energy flow, by modifying

Eq. (42),

σe = σa + σs + σint. (47)

Eq. (47) is simply verified by using Eqs. (39), (40), (41), (46), and (35).

B. Arbitrary film

We can generalize the results above to films of an arbitrary width taking care that not

only the scatterer but also the host absorb energy from the incident wave. We identify

the transmitted wave t exp[ik(z − d)]Ei with the sum of the incident plus forward-scattered

wave, so that

s+ = t exp (−ikd) − 1, (48)

where t is given by Eq. (7). The backward scattered wave is simply the reflected wave

s− = r, (49)

where r is given by Eq. (6). The scattered intensity is therefore

Is(z) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Is+(z) = |s+|2 exp (−2k′′z)Ii, (z ≥ d)

Is−(z) = |s−|2 exp (2k′′z)Ii. (z ≤ 0)

(50)

The power absorbed per unit area I0
a(z−, z+) + Ia(z−, z+) within a volume delimited by two

positions z− < 0 and z+ > d is simply obtained by applying Poynting’s theorem,

Ia(z−, z+) = −{|s−|2 exp (2k′′z−)−2
n′′

n′ Im[s− exp (−2ik′z−)]+(|s+|2 +2s′+) exp (−2k′′z+)}Ii,

(51)
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where I0
a(z−, z+) = [exp (−2k′′z−) − exp (−2k′′z+)]Ii corresponds to the energy that would

be absorbed in the absence of the film. The transmitted intensity may be written as

It(z) = Ii(z) + Is+(z) − Ie(z), (z > d) (52)

where we identify the extinction intensity

Ie(z) = −2s′+ exp (−2k′′z)Ii. (z > d) (53)

Extrapolating the results above to z, z−, z+ → 0, we may define a scattering cross section

σs/A = [Is−(0) + Is+(0)]/Ii = |s+|2 + |s−|2, (54)

an absorption cross section

σa/A = Ia(0, 0)/Ii = −(|s−|2 + |s+|2) + 2
n′′

n′ s
′′
− − 2s′+, (55)

and an extinction cross section

σe/A = Ie(0)/Ii = −2s′+. (56)

As in the previous case, Eq. (42) is violated and the extinction, scattering, and absorption

coefficients are related by Eq. (47) (σe = σa + σs + σint), where the interference intensity

and cross section are given anew by Eqs. (45) and (46), the only difference being the values

(48), (49) of the forward (s+) and backward (s−) scattering matrix elements, given in terms

of r (6) and t (7), and the finite scattering cross section (54).

C. Particles

We can further generalize the results above to the case of scattering by arbitrary particles

within opaque media. In this case there is a semantic problem related to the definition of

absorption, scattering, and extinction cross sections, as both the particle and the host may
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absorb energy. Thus there is energy absorption even in the absence of the particle, and

the intensity of the scattered waves is dissipated by the host. Furthermore, the particle

induces near fields which excite additional currents within the host, producing additional

energy dissipation within the neighborhood of the particle, but on its outside. This near

field contribution is absent in the cases of planar geometries discussed previously. Thus,

several definitions of absorption and extinction have been proposed which, unlike the case

within transparent hosts, are not equivalent to each other.22–26

Consider a small particle within a weakly absorbing host and illuminated by a linearly

polarized monochromatic wave. We center the particle at the origin of the coordinate sys-

tem and orient its axes so that the incoming wave is polarized along the x direction and

propagates along the z direction,

Ei(r) = Eix̂ exp (ikz). (57)

The scattered field far from the particle is given by

Es(r) = is(Ω)Ei
exp (ikr)

kr
, (58)

which defines the scattering amplitude s(Ω) in the direction Ω̂ = r/r. The corresponding

magnetic fields may be obtained from Eqs. (57) and (58) through Faraday’s law. The

Poynting vector S = Si+Ss+Sint has a contribution Si from the incident field, a contribution

Ss from the scattered fields, and a contribution Sint due to their interference with the incident

field. As the latter is proportional to exp [i(kr − k∗z)] = exp {i[k − k∗ cos(θ)]r}, it is a very

rapidly oscillating function of the polar angle θ, except in the neighborhood of the stationary

phase values θ = 0, π. Thus, it does not contribute to the energy flow across a finte area

detector (i.e., with a transverse size >
√

rλ or equivalently, an angular aperture >
√

λ/r),

unless it is situated along the forward or backward directions. The intensity close to θ = 0
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is therefore

I(r) = Sz(r) =

{
1 − 2Im

[
sx(0)

exp (ik∗rθ2/2)

kr

]
+

|s(0)|2
|k|2r2

}
Ii exp (−2k′′r), (59)

which integrated within the aperture of a detector yields the detected power

Pd(r) =

[
Ad − 4π

|k|2s′x(0)

]
Ii exp (−2k′′r), (60)

where Ad = r2
∫

dΩf(θ) is the effective collection area of the detector whose sensitivity f(θ)

is a function that interpolates smoothly from f(0) = 1 at its center to f(θ �
√

λ/r) = 0

at its edge. To obtain Eq. (60) we assumed that the solid angular aperture Ωd = Ad/r
2

of the detector is very small, so that we may neglect the power |S(0)|2IiΩd/|k|2 scattered

into it (i.e., the integral of the third term of Eq. (59)). Furthermore, we assumed that

the collection surface is spherical and centered on the particle, so that r remains constant

throughout the integration. Eq. (60) may be interpreted as a removal of all the energy that

falls on an obstacle situated at the origin with a transverse area given by the extinction cross

section

σe =
4π

|k|2s′x(0), (61)

followed by propagation for a distance r within the opaque medium, where additional energy

is removed, yielding the extinction power

Pe(r) =
4π

|k|2s′x(0)Ii exp (−2k′′r). (62)

Eq. (61) is a statement of the optical theorem24 within opaque media, the only difference

with the transparent case being the replacement of the wavenumber k by its magnitude

|k|. We remark that integrating Eq. (59) over a flat surface, with constant z instead of a

spherical surface with constant r we would have obtained a different expression,

σe(z) = 4π Re

[
sx(0)

k2

]
, (flat detector) (63)
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for the extinction cross section.24

Similarly, we calculate the incoming intensity

I(r) = Sz(r) =

{
exp (2k′′r) + 2

n′′

n′ Re

[
sx(π)

exp (2ik′r) exp (−ik∗rξ2/2)

kr

]

−|s(π)|2
|k|2r2

exp (−2k′′r)

}
Ii (64)

with r close to the backwards direction θ = π − ξ ≈ π. The first and the last terms in Eq.

(64) correspond to the intensity of the incident wave and the intensity scattered along the

backwards direction, while the middle term is an oscillating function of r analogous to that

in Eqs. (45), due to the interference between the incident and the backscattered wave. Due

to its rapid oscillations as a function of ξ, it only contributes to the energy flux close to

ξ = 0, where it yields the outgoing power

Pint(r) = − 4π

|k|2
n′′

n′ Im [sx(π) exp (2ik′r)] Ii. (65)

Extrapolating to r → 0, we define an interference cross section

σint ≡ Pint(r → 0)/Ii = − 4π

|k|2
n′′

n′ s
′′
x(π). (66)

The total power P0
a(r) + Pa(r) absorbed within a sphere of radius r may be obtained

through Poynting’s theorem. Thus, it has a contribution P0
a(r) = πIi(2k

′′r cosh 2k′′r −

sinh 2k′′r)/(k′′)2 corresponding to the power that would have been dissipated by the host

in the absence of the scatterer. The other contributions Pa = −Ps + Pe − Pint include the

scattered outflowing energy

Ps(r) =
∫

dΩ
|s(Ω)|2
|k|2 exp (−2k′′r), (67)

integrated over all the solid angle Ω. Finally, there are contributions Pe(r) and Pint(r) (Eqs.

(62) and (65)) due to the interference between incident and scattered fields along the forward
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and backwards directions. Finally, extrapolating Eq. (67) towards r → 0 we get rid of the

far field contributions to the energy absorbed by the host and arrive finally at Eq. (47)

(σe = σa + σs + σint), where we define the scattering cross section

σs ≡ Ps(r → 0)/Ii =
∫

dΩ
|s(Ω)|2
|k|2 , (68)

and the absorption cross section

σa ≡ Pa(r → 0)/Ii (69)

In summary, when a particle within an absorbing medium is illuminated, its extinction

cross section, defined through its contribution to the removal of energy from the incoming

wave, is not accounted for by the scattered and absorbed power, as in the case of transparent

hosts. There is an additional contribution due to the interference between the counterprop-

agating incident and backscattered waves.

6. Conclusions

We have shown that the energy flux is not an additive quantity when the surface of an opaque

medium is illuminated from within with an electromagnetic wave, as there is a spatially

oscillating contribution to the Poynting vector whose amplitude does not decay away from

the surface and which arises from the interference between the incoming and outgoing waves.

In this situation, the reflectance and transmittance cannot be interpreted as the fraction of

the incoming power that is reflected or transmitted, nor as the probability for an incoming

photon to be reflected or transmitted. Thus, theoretical calculations which depend on these

interpretations are bound to fail. We illustrated the dangers of an uncritical use of the

concepts of reflectance and transmittance through the calculation of the optical properties of

thin opaque supported films illuminated by incoherent quasi-monochromatic light, obtaining
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unphysical results such as a reflectance that is larger than unity. A careful analysis for the

case of partially coherent illumination showed that the interference contribution to the energy

flux does decay away from the surface in this case and becomes negligible at distances of

the order of half a longitudinal correlation distance. Thus, the simple minded approach

assuming additivity might yield the correct results, but only for films that are wider than

the correlation length d > 2L. This condition is more restrictive than that applicable to

transparent media. For films that are too thin, it may prove impossible to satisfy the

condition of quasi-monochomaticity Δω � ω together with the condition of a relatively

small correlation length 2L < d, so a calculation of their optical properties would have

to account in detail for the partial coherence.14 Similar considerations apply to evanescent

waves within transparent systems, as in the FTIR geometry, and for waves within media

with gain, where the amplitude increases instead of decreasing exponentially as each wave

propagates.

We analized the energy flow for the problem of scattering by particles immersed within

dissipative systems, for both planar and for arbitrary geometries. We have proposed defini-

tions of the absorption, scattering, and extinction cross sections in such a way that they are

an intrinsic property of the particles although their calculation requires only a knowledge

of the asymptotic scattered far field. We have shown that the usual relation between ab-

sorption, scattering, and extinction cross sections does not hold within dissipative media, as

there is a finite contribution to the energy flow due to the interference between the incident

and the backscattered waves. However, by introducing a new interference cross section, we

obtained a generalization: σe = σa + σs + σint.
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7. Figure Captions

1. Film of thickness d on which monochromatic light is normally incident from the left.

There are two interfaces between the three media (vacuum (1), film (2), and substrate

(3)), with refraction indexes (ni). The wave vectors (±ki, i = 1 . . . 3) for waves

traveling towards the right and left within each media are shown. The coordinate

system is also indicated.

2. Reflectance RM (solid) calculated for a film normally illuminated with monochromatic

light of frequency ω and its incoherent counterpart RI (dashed) as a function of fre-

quency ω. Light is incident from vacuum (n1 = 1) and the film lies on a substrate

with n3 = 2. The thickness of the film is d = λT /2, and it has a dissipation factor

γ = 0.01ωT , and effective weight ω2
p = ω2

T . The longitudinal and transverse frequencies

ωT and ωL are indicated.

3. Reflectance RM (solid) calculated for a film as in Fig. 2 but five times thinner, of

width d = λT /10, normally illuminated by monochromatic light of frequency ω, and

its incoherent counterpart RI (dashed).

4. Incoherent reflectance RI of free-standing films (n1 = n3 = 1) of widths d = 10λp, 11λp,

dissipation factors γ = 10−8, 2 × 10−8, and transition weight ω2
p = ω2

T .

5. Transmittance T21 of a single interface 2 − 1 for a wave incident from a medium with

dielectric response given by Eq. (1) on the interface that separates it from vacuum,

as a function of frequency. We took ω2
p = ω2

T and γ = 0.01ωT , as in Figs. 2 and 3.

6. Pulse of length 2L = vgτ0 incident (solid) and reflected (dashed) from an interface

(wide solid line) at different times increasing from the bottom towards the top. Beyond
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the pseudointerface of width w ≥ L (gray) additivity holds, as there is no overlap and

therefore no interference between the incident and the reflected pulses. The directions

of motion are indicated (arrows).
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8. Figures
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Ortiz and Mochán Fig.2
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Ortiz and Mochán Fig.3
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Ortiz and Mochán Fig.4
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Ortiz and Mochán Fig.5
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Ortiz and Mochán Fig.6
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