
Molecular Physics

Vol. 107, No. 14, 20 July 2009, 1467–1472

RESEARCH ARTICLE

Energy transfer to an anharmonic diatomic system
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We model an anharmonic diatomic molecule using deformed creation and annihilation operators such that the
energy spectrum generated by a Hamiltonian of the harmonic oscillator’s form written in terms of deformed
operators is similar to that of a Morse potential. We construct an approximate time evolution operator and
evaluate transition probabilities which are compared with those obtained by an expansion in a basis of Morse
eigenfunctions. The algebraic results compare favorably with the numerical results.
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1. Introduction

Collinear atom–diatom molecular collisions have

played an important role in understanding dynamical

processes as well as assessing different approximations.

Exact quantum mechanical calculations of transition

rates between states of a diatomic system have been

studied since the early 1960s [1,2] for the case of

a harmonic intramolecular potential. Later, Clark and

Dickinson [3] calculated the exact quantum mechanical

results for a collinear collision between an atom and

a Morse oscillator using the reactance matrix K.

In certain cases, it is sufficient to use semiclassical

approximations in which the motion of the external

driving system is treated classically and the internal

degrees of freedom are treated quantum mechanically

[4,5]. In Ref. [4], use was made of algebraic methods to

evaluate the transition probabilities in a collinear

collision between an atom and a diatom modeled

through a harmonic oscillator. It was found that the

inclusion of quadratic terms in the interaction potential

was relevant, their relevance depending upon the

softness of the intramolecular potential. In Ref. [6],

a study of the importance of higher than quadratic

terms in the interaction was made, keeping the

harmonic model for the intramolecular potential.

Most efforts considering a binding Morse potential

are focused on adding anharmonic terms to the har-

monic potential [7] or by means of the isomorphism

between the two-dimensional harmonic oscillator and

the one-dimensional Morse potential [8,9] with the dis-

advantage that the correspondence between the su(2)

algebra and the configuration space was not clear.

In a recent series of works, the realization of the

coordinate and the momentum in terms of creation

and annihilation operators of the Morse functions was

established [10,11]. Recently, Alvarez et al. [12] made

a study of the atom–diatom inelastic collision in

the semiclassical approximation using the dynamical

algebra for the Morse potential bound states. In this

work we make use of a different approach consisting of

the deformation of the usual harmonic oscillator

creation–annihilation operators in such a way that

a Hamiltonian of the harmonic oscillator form, when

expressed in terms of the deformed operators, yields

the energy spectrum of a Morse potential.

The commutation relations fulfilled by the deformed

operators are similar to those of the SU(2) generators

given in Ref. [11], which allows us to write an

expansion for the deformed coordinate and momenta

in terms of deformed creation and annihilation

operators.

2. Theory

Let us consider a diatomic molecule with an anhar-

monic non-negligible component in interaction with an

external perturbation. Numerical and algebraic

approaches have been developed for the computation

of vibrational transitions when the oscillator is either

harmonic or anharmonic. For the anharmonic case

it has been common practice to model the molecule

by a Morse potential [3,12–19] or an expansion in
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which one incorporates higher than quadratic terms in

the displacement coordinate of the molecular potential

[20–25].

The deformed annihilation and creation operators

Â and Ây are defined as [26]

Â ¼ âfðn̂Þ ¼ fðn̂þ 1Þâ; Ay ¼ fðn̂Þây ¼ ayfðn̂þ 1Þ;
ð1Þ

where â and ây are the usual harmonic oscillator

operators and fðn̂Þ is a deformation function that

depends on the number operator n̂ ¼ âyâ.
The commutation relations between the deformed

operators are given by

½n̂; Â� ¼ �Â; ½n̂; Ây� ¼ Ây;

½Â; Ây� ¼ ðn̂þ 1Þf 2ðn̂þ 1Þ � n̂f 2ðn̂Þ; ð2Þ

and a Hamiltonian of the harmonic oscillator’s form

written in terms of the deformed operators yields

ĤD ¼ �h�

2
ðÂyÂþ ÂÂyÞ ¼ �h�

2
ðn̂f 2ðn̂Þ þ ðn̂þ 1Þf 2ðn̂þ 1ÞÞ:

ð3Þ

We now choose the deformation function [27]

f 2ðn̂Þ ¼ 1� �n̂
1� � ; ð4Þ

where � ¼ 1=ð2Nþ 1Þ with N an integer. Then, the

deformed Hamiltonian becomes

ĤD ¼ �h�0 n̂þ 1=2� � n̂þ 1

2

� �2

��
4

 !

; ð5Þ

with �0 ¼ �=ð1� �Þ. Equation (5) is the Hamiltonian

of a displaced harmonic oscillator plus a nonlinear

contribution quadratic in the number operator. Thus,

its eigenfunctions jni are also eigenfunctions of the

harmonic oscillator, but it supports only a finite

number of bound states Nmax ¼ Nþ 1; n can take

values 0; 1; . . . ;N. Apart from a constant term, the

resulting spectrum is similar to that of the Morse and

the Pöschl–Teller Hamiltonians [28],

EM ¼ �h!e nþ 1

2

� �

� �h�e!e nþ 1

2

� �2

; ð6Þ

corresponding to the integers 0 � n � N. Direct

comparison of Equations (5) and (6) allows the

identification

!e ¼ �
0; �e ¼ �: ð7Þ

With this choice for the deformation function and

keeping up to linear terms in the anharmonicity

parameter �, the commutation relations for the

deformed operators are

½Â; Ây� ¼ 1� �

1� � n̂; ½Â; n̂� ¼ Â;

½Ây; n̂� ¼ �Ây; ð8Þ

which coincide with those obtained by Carvajal et al.

[11] in their study of the SU(2) model for vibrational

excitations. In the same work, they gave the displace-

ment and momentum operators as a series expansion

involving all powers of the renormalized SU(2)

operators. From those expressions we obtained

the corresponding expressions in terms of deformed

creation and annihilation operators,

x̂D ¼
ffiffiffiffiffiffiffiffiffiffiffi

�h

2m�0

r

ðf00þ f10Â
yþ Âf01þ f20Â

y2 þ Â2f02þ �� �Þ;

ð9Þ

p̂D ¼ i

ffiffiffiffiffiffiffiffiffiffiffi

�hm�0

2

r

ðg10Ây þ Âg01 þ g20Â
y2 þ Â2g02 þ � � �Þ;

ð10Þ

where the expansion coefficients fij and gij are functions

of the number operator, the explicit form of which was

obtained in Ref. [29].

Let us now consider a one-dimensional

Hamiltonian with a Morse potential characterized by

its depth D and inverse length scale parameter a,

HM ¼ � �h2

2�

d2

dx2
þD½e�2ax � 2e�ax�; ð11Þ

with � the reduced mass of the system. The number of

bound states supported by the potential is [8]

N ¼ K� 1

2

� �

; ð12Þ

where the square bracket indicates the integer part and

the dimensionless variable K is defined by

K2 ¼ 2�D

�h2a2
: ð13Þ

Then, once we specify the particle’s mass, the inverse

scale parameter and the potential’s depth, the number

of bound states is fixed as well as the angular frequency

of the oscillator associated with the Morse potential

! ¼

ffiffiffiffiffiffiffi

2D

�

s

a:

Since the expressions we have for the deformed

coordinate are independent of the mass, we will set

�h ¼ � ¼ 1 in the following and fix the scale parameter
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a ¼ 1=4 and D¼ 8 so that K¼ 16, !¼ 1 and N¼ 15,

corresponding to a H2 molecule in its ground state [9].

In order to test the accuracy obtained when we make

an expansion of the deformed coordinate xD keeping

up to first-order terms, we evaluated its matrix

elements hijxDjji and those of the Morse coordinate

h�ijxj�ji between eigenfunctions of the Morse

Hamiltonian �n characterized by the above parameters

[8]. Some of the numerical results are given in

Tables 1–3 for three different regions of matrix

elements.

We see that even for a system supporting

a relatively small number of bound states, such

as that under consideration here, the expansion of

the deformed coordinate keeping only up to first-order

terms already yields matrix elements in reasonable

agreement with the exact Morse matrix elements, not

only for the lowest part of the spectrum but also

for states in the middle and in the high part of the

spectrum. In a forthcoming work, we will consider

higher than linear terms in the expansion in order

to evaluate their contribution.

3. Transition probabilities

Consider now an external interaction V(x, t) that may

be present in a collinear collision between an atom and

a diatom in the semiclassical approximation [4,12] or

due to an interaction with an external electric field [30],

among other possibilities. The Hamiltonian for the

system is

Ĥ ¼ Ĥ0 þ Vðx; tÞ; ð14Þ

where Ĥ0 is the free Hamiltonian for the diatom.

In order to evaluate the transition probabilities we

make an expansion in terms of eigenfunctions of the

unperturbed Hamiltonian

Ĥ0j ni ¼ Eð0Þ
n j ni; j�i ¼

X

n

anðtÞe�iE
ð0Þ
n t=�hj�ni:

ð15Þ

Substitution into Schrödinger’s equation yields

the following set of equations for the expansion

coefficients:

_am ¼ 1

i�h

X

n

ane
�ði=�hÞðEð0Þ

n �E
ð0Þ
m ÞtVmn; ð16Þ

with

Vmn ¼ h�mjVj�ni; ð17Þ

the matrix element of the interaction. For simplicity,

we now make a Taylor series expansion of the

interaction and write it as

Vðx; tÞ ¼ �0ðtÞ þ �1ðtÞx; ð18Þ

where x is the displacement from the equilibrium

position. We will consider as the unperturbed

Hamiltonian a Morse Hamiltonian. Then, solving

the set of differential equations given by (16)

we obtain the transition probability from state i to

state m as

Pi;mðtÞ ¼ jamðtÞj2; ð19Þ

with the initial condition amðt0Þ ¼ �m;i.

Instead of a numerical calculation, we could also

proceed with an algebraic treatment. To that end we

first go into the interaction picture where the evolution

due to the unperturbed Hamiltonian has been taken

into account [31]

i�h
@UI

@t
¼ ½Uy

0Vðx; tÞU0�UI � HIðtÞUIðtÞ; UIðt0Þ ¼ 1;

ð20Þ

and where we have set the initial time t0 ! �1 as that

when the interaction is null; U0 is the time evolution

operator corresponding to the unperturbed system, in

this case a deformed oscillator whose parameters are

fixed by the depth and scale parameters of the Morse

system we want to approximate.

Table 1. Matrix elements of the deformed displacement xD
and the Morse coordinate between states 0–0, 0–1, 0–2, 1–1,
1–2 and 1–3.

0–0 0–1 0–2 1–1 1–2 1–3

hxi 0.1919 0.7180 �0.092 0.5965 1.0321 �0.1656
hxDi 0.1951 0.7071 0.0 0.3332 1.0171 0.0

Table 2. Matrix elements of the deformed displacement xD
and the Morse coordinate between states 5–5, 5–6, 5–7, 6–6,
6–7 and 6–8.

5–5 5–6 5–7 6–6 6–7 6–8

hxi 2.6171 1.9191 �0.5055 3.2642 2.1133 �0.606
hxDi 2.3444 1.8974 0.0 2.9925 2.0917 0.0

Table 3. Matrix elements of the deformed displacement xD
and the Morse coordinate between states 11–11, 11–12, 11–
13, 12–12, 12–13 and 12–14.

11–11 11–12 11–13 12–12 12–13 12–14

hxi 6.9579 2.8805 �1.0932 8.3754 3.0741 �1.2280
hxDi 8.2072 3.0779 0.0 10.116 3.2914 0.0
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The unperturbed time evolution operator is

U0 ¼ exp �i�t n̂þ 1

2
� � n̂þ 1

2

� �2

��
4

 !" #

; ð21Þ

and the deformed coordinate xD is approximated by

Equation (9) keeping only up to first-order terms.

The deformed coordinate in the interaction picture

is then

xDðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi

�h

2m�

r

ðf00 þ Âe�i�tð1�2�n̂Þf01 þ f10e
i�tð1�2�n̂ÞÂyÞ:

ð22Þ

Note that due to the nonlinearity of the Hamiltonian

the number operator appears in the exponents so that

we have a system whose frequency �ðn̂Þ ¼ �ð1� 2�n̂Þ
depends upon the number operator. In order to

circumvent this difficulty we will replace the number

operator by the initial number eigenvalue, thus

attaining a frequency that is a function of the degree

of excitation of the initial state, and fix the coefficients

fij of the expansion of the coordinate. In this

approximation, the interaction picture Hamiltonian

can be written as

HIðtÞ ¼  0ðtÞ þ  1âþ  �
1â

y; ð23Þ

where the time-dependent functions  n(t) are given by

 0ðtÞ ¼ �0ðtÞ þ �1ðtÞ
ffiffiffiffiffiffiffiffiffiffi

�h

2m�

r

f00; ð24Þ

 1ðtÞ ¼ �1ðtÞ
ffiffiffiffiffiffiffiffiffiffi

�h

2m�

r

f10e
i�tð1�2�niÞ; ð25Þ

and we have used the fact that f01 ¼ f10. Since the

Hamiltonian in the interaction picture has been written

as a linear combination of operators that form a finite

Lie algebra, we can write the corresponding time

evolution operator as a product of exponentials [4,32]

UI ¼
Y

2

n¼0

e�nXn ; ð26Þ

with the operators Xn arranged in normal order,

X0¼ 1, X1 ¼ ây, X2 ¼ â. Substitution into

Schrödinger’s equation yields a set of three coupled,

first-order, nonlinear ordinary differential equations

for the complex functions �n

_�0 ¼ � i

�h
ð 0 þ �1 1Þ; ð27Þ

_�1 ¼ � i

�h
 �
1; ð28Þ

_�2 ¼ � i

�h
 1: ð29Þ

Numerically solving the set of equations given above

we can evaluate the temporal evolution of any

observable, for instance the transition probabilities

are given by

Pi;mðtÞ ¼ jhmjUIðt; t0Þjiij2: ð30Þ
In the following, we evaluate the transition

probabilities as a function of time for several transi-

tions and compare the results from the numerical and

algebraic approaches. For the numerical evaluation of

the transition probabilities we choose a time-dependent

interaction of the form

Vðx; tÞ ¼ A0sech
2ð�tÞ 1þ 1

4
x

� �

; ð31Þ

with A0 ¼ E=4 and � ¼ 1=4
ffiffiffiffiffiffiffiffi

E=2
p

, reminiscent of the

collision between an atom and a diatom (E being

the collision energy) in the semiclassical approximation

(see Refs. [2,3,12]), and we set the parameters for the

Morse potential N ¼ 15, a ¼ 1=4, D¼ 8 and !¼ 1 as

before.

In Figure 1, we show the permanency probability

(0–0) as a function of the parameter E=�h! for the cases

when the probabilities are evaluated by an expansion

in eigenfunctions of the Morse potential (dotted line)

and when we apply the algebraic method with

deformed operators (full line). The probabilities were

evaluated at times where the interaction is less than

10�9A0. It can be seen that, for values of the parameter

E=�h! smaller than 10, both methods yield almost

the same results. However, for larger values of the

parameter, differences begin to appear. For the system

under consideration here supporting 15 bound states,

an interaction energy of the order of 10�h! is capable of

exciting states in the upper part of the spectrum where

anharmonic effects are non-negligible. It is important

to recall that, in the algebraic method, we

have approximated the displacement coordinate by

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

0 2 4 6 8 10 12 14 16

P
0

,0

Energy/hω

‘prd00.dat’
‘prm00.dat’

Figure 1. Permanency probability P0�0 for a Morse oscilla-
tor (dotted line) and a deformed oscillator (full line) as
a function of the parameter E=�h!.
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a first-order polynomial in terms of deformed opera-

tors and neglected quadratic and higher-order terms.

In Figure 2, we show the transition (0–1) as

a function of the parameter E=�h! for the same set of

parameters as in the previous figure. It can be seen that

the qualitative behavior is similar in both cases,

although the quantitative values start to deviate for

large values of E=�h!. As in the previous case we believe

that this is due to the fact that the expansion of the

deformed coordinate in terms of deformed operators

was cut at first order, so that only direct transitions

between neighboring states were taken into account.

Figure 3 shows the temporal evolution of the

transition (1–2) for a fixed value of the strength

parameter (E=�h!¼ 5) in the two approximations

discussed above. It is clear that the qualitative behavior

is similar along the whole interaction path. We can

state that the approximations made in the interaction

picture Hamiltonian in order to obtain a closed

Lie algebra (see Equation (23)) are adequate since,

for this interaction strength (recall that A0 ¼ E=4) and

strength parameter, the average occupation number

remains close to the initial value and the replacement

of the number operator by a constant is reasonable.

4. Discussion

In this work we used a deformed algebra in order

to describe anharmonic potentials. An adequate choice

of the deformation function allowed us to reproduce

the energy spectrum of a Morse potential when

a potential of the harmonic oscillator form is written

in terms of deformed operators. Using these deformed

operators we can express the displacement coordinate

as a polynomial in terms of the deformed operators.

Keeping only up to linear terms in the expansion we

calculated its matrix elements between bound states

of the spectrum and compared them with those of the

Morse coordinate. We found reasonable agreement.

We constructed an approximate time evolution opera-

tor, from which we calculated permanency and tran-

sition probabilities and contrasted them with those

obtained by the use of an expansion in terms

of eigenfunctions of the Morse potential. The results

agree for small and intermediate interaction strengths

and differences appear when the strength of the

interaction is such that the average value of the

number operator hnjUy
I n̂UIjni during the interaction

differs significantly from the initial value ni, and the

assumption of a constant effective frequency

�ðniÞ ! �ð1� 2�n̂Þ in the exponents of the deformed

coordinate and momentum in the interaction picture

breaks down (see Equation (22)). The more general

case when higher than linear terms are incorporated in

the interaction potential can be treated in an approx-

imate form through an iterative method where the part

of the interaction that forms a finite Lie algebra

is taken into account in an exact form and the rest is

treated as a perturbation [7,20]. The relevance of

quadratic terms in the interaction and the inclusion of

bilinear terms in the expansion of the deformed

coordinate and momentum is under study and will

be published elsewhere [33].
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