SHG from bulk and surface of nanoparticle composites

Theory: W. Luis Mochán,¹ Jesús Maytorena,^{1,2} Bernardo S. Mendoza³, Vera L. Brudny,⁴ Experiment: M. Downer,⁵ L. Sun, P. Figliozzi,⁵ Y. Q. An,⁵ Y. Jiang,⁵ P. T. Wilson,⁵ N. Matlis,⁵ B. Mattern⁵, C. W. White,⁶ S. P. Withrow⁶

Second Harmonic Generation

 $ec{P}(ec{2}\omega)\proptoec{E}(\omega)ec{E}(\omega)$

SHG and Symmetry

 $\vec{P}^{(2)} = \chi^{(2)} \vec{E} \vec{E}$

After an inversion

$$-\vec{P}^{(2)} = \chi_I^{(2)}(-\vec{E})(-\vec{E})$$

 $Centrosymmetry \Rightarrow$

$$\chi_I^{(2)} = \chi^{(2)}$$

$$\implies \vec{P}^{(2)} = 0, \quad \chi^{(2)} = 0$$

Centrosymmetry and Surfaces

Surfaces are not centrosymmetric!

SHG and Surfaces

Dipolar SHG $P_i^{(2)} = \chi_{ijk} E_j E_k$ comes from the surface.

SHG and Surfaces

Dipolar SHG $P_i^{(2)} = \chi_{ijk} E_j E_k$ comes from the surface. There might be SHG from bulk... but it is *multipolar*

$$P_i^{(2)} = \chi_{ijkl} E_j \partial_k E_l.$$

Buried interfaces: nanoparticles

Observe interfaces with SHG

Experiment

Y. Jiang, P. T. Wilson, M. C. Downer, C. W. White, and S. P. Withrow, Appl. Phys. Lett. **78**, 766 (2001).

- Signal comes from nanospheres.
- Interface sensitive (annealed in Ar vs. Ar/H₂).
- Forward SHG.

WL Mochán, IFUNAM, 22/IX/05 – p.8

WL Mochán, IFUNAM, 22/IX/05 – p.8

WL Mochán, IFUNAM, 22/IX/05 – p.8

WL Mochán, IFUNAM, 22/IX/05 – p.8

 $\chi_{\perp\parallel\parallel}\propto f$

• Centrosymmetry is locally lost...

• Centrosymmetry is locally lost...

- but globally recovered.
- Total dipole is null...

• Centrosymmetry is locally lost...

- but globally recovered.
- Total dipole is null...
- unless field is inhomogeneous.

$$\vec{p} = \gamma^e \vec{E} \cdot \nabla \vec{E} + \gamma^m \vec{E} \times (\nabla \times \vec{E})$$

$$\stackrel{\leftrightarrow}{Q} = \gamma^q \vec{E} \vec{E}$$

 $a, b, f, d \longrightarrow \gamma^e, \gamma^m, \gamma^q$

Radiation patterns

No forward radiation and wide distribution vs. Narrow distribution along forward direction!

SHG from composite film

Theory

$$\vec{P}^{nl} = n_s \vec{p}^{(2)} - \frac{1}{6} \nabla \cdot n_s \stackrel{\leftrightarrow}{Q}^{(2)}$$
$$= \Gamma \nabla E^2 + \Delta' \vec{E} \cdot \nabla \vec{E}$$
$$\Gamma = \frac{n_b}{18} (9\gamma^m + \gamma^q - 3\tilde{\gamma}^q)$$
$$\Delta' \equiv n_b (\gamma^e - \gamma^m - \gamma^q/6),$$
$$a, b, f, d \longrightarrow \gamma^e, \gamma^m, \gamma^q$$

$$\implies \vec{j}^{(2)}$$

$$\implies \vec{A}^{(2)}$$

$$\implies \vec{E}^{(2)}, \vec{B}^{(2)}$$

$$\implies \vec{S}^{(2)}$$

$$\implies \frac{d\mathcal{E}}{d\Omega} = \frac{1}{\mathcal{P}^2} \frac{d\mathcal{P}^{(2)}}{d\Omega}$$

$$\implies \mathcal{E}$$

Angular distribution

Figliozzi et al., PRL 94, 047401 (2005).

Efficiency

• $\mathcal{E}=\mathcal{P}^{(2)}/\mathcal{P}^2$

- $I^{(2)} \propto I^2 \Rightarrow \mathcal{P}^{(2)} \propto \mathcal{P}^2 / w_0^2 \Longrightarrow \mathcal{E} \propto 1 / w_0^2, \dots$
- but, as $\vec{P} \propto \vec{E} \nabla \vec{E} \sim E^2 / w_0$, output power is proportional to squared incoming *intensity*!

$$\mathcal{E} = \frac{64\pi^2}{c} \frac{(ql)^2}{w_0^4} |\Delta'|^2$$

$$\approx 10^{-4} \zeta (qa_B)^4 (ql)^2 f_b^2 \theta_1^4 \,\mathrm{W}^{-1}$$

$$\approx 10^{-24} \mathbf{W}^{-1}.$$

 Larger input power (but bounded intensity) might actually yield less output power!

Two Beam SHG

Two Beam SHG

• Solution: Enhance transverse gradients with two beam SHG.

An historical relic

Austin MM 03:

 $AK=A,-h_{2}$ $E_{j}\cdot DE_{j}+E_{j}\cdot DE_{j}$ $h_{1} \quad h_{2} \quad E_{j}\cdot A_{2}E_{3}+E_{3} \quad h_{1} \in \mathbb{R}$ 1.1 sin²0 1.1 sin²0 1.0⁻² 12 k, + k_ (3×10-2 10-4

Two Beam SHG

• Expect: $(w_0/\lambda)^2$ enhancement
Two Beam SHG

- Expect: $(w_0/\lambda)^2$ enhancement
- but $\vec{E_1} \cdot \nabla \vec{E_2} + \vec{E_2} \cdot \nabla \vec{E_1}$ is null if both beams are *s* polarized and longitudinal if both are *p* polarized \rightarrow no SHG.

Two Beam SHG

- Expect: $(w_0/\lambda)^2$ enhancement
- but $\vec{E_1} \cdot \nabla \vec{E_2} + \vec{E_2} \cdot \nabla \vec{E_1}$ is null if both beams are *s* polarized and longitudinal if both are *p* polarized \rightarrow no SHG.

With crossed polarization there is no *intensity* modulation but a polarization modulation that may produce many orders of magnitude enhancement of SHG.

Figliozzi et al., PRL **94**, 047401 (2005)

Liangfeng Sun et al., to appear in Optics Lett.

Surface or bulk?

Surface or bulk?

Contrast...

Why?

• Nanocrystals

 $\vec{P}_{nc} = \Gamma \nabla E^2 + \Delta' \vec{E} \cdot \nabla \vec{E}$

Why?

• Nanocrystals

$$\vec{P}_{nc} = \Gamma \nabla E^2 + \Delta' \vec{E} \cdot \nabla \vec{E}$$

• Glass

$$\vec{P}_g = \gamma_g \nabla E^2 + \delta'_g \vec{E} \cdot \nabla \vec{E}$$

Why?

• Nanocrystals

$$\vec{P}_{nc} = \Gamma \nabla E^2 + \Delta' \vec{E} \cdot \nabla \vec{E}$$

Glass

$$\vec{P}_g = \gamma_g \nabla E^2 + \delta'_g \vec{E} \cdot \nabla \vec{E}$$

• By increasing $\vec{E} \cdot \nabla \vec{E}$ both contributions should have been enhanced by the same amount. Contrast= $|\Delta'/\delta'_a|^2$.

SHG from surface

- Large gradient close to surface, independent of beam profile.
- $\vec{p}^{(2)} = \gamma^e \vec{E_l} \cdot \nabla \vec{E_l} + \alpha_2 \stackrel{\leftrightarrow}{T}{}^I \cdot \vec{p}^{(2)}.$
- Integrate over z and over area to obtain *dipolar* $\chi_s^{(2)}$.

SHG from surface

SHG from surface

Surface vs. bulk efficiency (s pol.)

$$\frac{\mathcal{E}_s}{\mathcal{E}_B} = \frac{2|\chi^s_{\perp\parallel\parallel}|^2}{|\Delta'|^2(q\ell)^2} \left(1 + \left(\frac{2\alpha}{\theta_1}\right)^2\right).$$

For Si/SiO₂ nanocrystals, $\hbar \omega = 1.55 \text{eV}$, $\ell = 1 \mu \text{m}$, $w_0 = 10 \mu \text{m}$ at normal incidence: $\sim 10^{-5}$.

Isotropic bulk ⇒ effective spherical shapes

Isotropic bulk ⇒ effective spherical shapes

 Anisotropic diffusion at surfaces and edges ⇒ anisotropic, non-spherical shapes

Non spherical particles

- $r = r_0 (1 + \sum_{lm} \xi_{lm} Y_{lm})$
- $xy \text{ isotropy} \Rightarrow m = 0$
- $\xi_{00} = 0$ if r_0 =average radius.
- $\xi_{10} \Rightarrow$ C.M. translation.
- $\xi_{20} \Rightarrow$ centrosymmetric spheroidal deformation.
- ξ_{30} is the lowest order deformation that breaks centrosymmetry and produces dipolar SH.

•
$$r_0 = \left\langle \frac{1}{4\pi} \int d\Omega \, r(\hat{\Omega}) \right\rangle.$$

- $\xi = \left\langle \int d\Omega r(\hat{\Omega}) Y_{30}(\hat{\Omega}) \right\rangle.$
- $r(\hat{\Omega}) = r_0(1 + \xi Y_{30}(\hat{\Omega}))$
- Assume small ξ .

Dipole moment

• Surface polarization

$$\vec{P}_s = \chi_s \left[\frac{a}{\epsilon_1^2} \hat{n} (\hat{n} \cdot \vec{D})^2 + \frac{2b}{\epsilon_1} (\vec{E} - \hat{n}\hat{n} \cdot \vec{E}) \hat{n} \cdot \vec{D} + \hat{f}\hat{n} (E^2 - (\hat{n} \cdot \vec{E})^2) \right]$$

- Surface normal $\hat{n} = \hat{r} \hat{\theta} \xi \, dY_{30}/d\theta$.
- Screened linear field $\vec{E} = L_{11}\vec{E_a}$.
- $L_{lw} = (2l+1)/(l\epsilon_w + l + 1).$
- Total dipole $\vec{p} = \int da \vec{P}_s + \text{linear screening at } 2\omega$.

Non linear polarizability

•
$$\vec{p_i} = \alpha_{ijk} E^a_j E^a_k$$

•
$$\alpha_{zzz} = -2A$$
,

•
$$\alpha_{zxx} = \alpha_{xxz} = \alpha_{xzx} = A$$
,

• $\alpha_{ijk} = 0$ if not equivalent to above.

•
$$A = \xi r_0^2 \sqrt{\pi/7} \chi_s (4\epsilon_2 a - 8b - 4\epsilon_2 f) L_{11}^2 L_{12}$$

Surface susceptibility of composite

- $\chi_{ijk} = nd\alpha_{ijk}$
- $\chi_{\perp\perp\perp} = -2X$
- $\chi_{\perp\parallel\parallel} = X$
- $\chi_{\parallel\parallel\perp} = \chi_{\parallel\perp\parallel} = X$,
- $X = n(d/r_0)\xi r_0^3 \sqrt{\pi/7}\chi_s(4\epsilon_2 a 8b 4\epsilon_2 f)L_{11}^2 L_{12}$

Angular dependence-large angles

- $\chi_{\perp \parallel \parallel} = \chi_{\parallel \parallel \perp} = \chi_{\parallel \perp \parallel} = -\chi_{\perp \perp \perp}/2$
- *p* polarization

• Maximum for transmission angle $= \tan^{-1}(1/2)$.

Angular dependence-small angles, finite beam, p input

Angular dependence-small angles, finite beam, p input

Surface vs. bulk efficiency (p pol.)

$$\frac{\mathcal{E}_s}{\mathcal{E}_B} = \frac{2|X|^2}{|\Delta'|^2 (q\ell)^2} \left(1 + \left(\frac{36\alpha}{\theta_1}\right)^2\right)$$

For Si/SiO₂ nanocrystals, $\hbar \omega = 1.55 \text{eV}$, $\ell = 1 \mu \text{m}$, $w_0 = 10 \mu \text{m}$, $N\xi = 2$ at normal incidence: ~ 10 .

Conclusions

- The surface of nanoparticles buried within composites may be observed with SHG.
- There is no forward radiation, but there is nearly forward coherent SHG from composites illuminated by finite beams.
- Output power cannot be boosted simply by increasing input power.
- SHG may be enhanced orders of magnitude using two cross-polarized beams.
- *Surface* SHG wouldn't be enhanced \Rightarrow Si nc/glass contrast.
- Local field gradients seem too small, but shape modifications might explain the change of contrast.